满分5 > 初中数学试题 >

如图,在直角坐标系中.Rt△ABC位于第一象限,两条直角边AB、BC分别平行于x...

如图,在直角坐标系中.Rt△ABC位于第一象限,两条直角边AB、BC分别平行于x轴、y轴,顶点B的坐标为(2,4),AB=1,BC=2.
(1)求AC边所在直线的解析式;
(2)若反比例函数y=manfen5.com 满分网(x>0)的图象经过点C,求该反比例函数的解析式,并通过计算判断点A是否在该函数的图象上;
(3)若反比例函数y=manfen5.com 满分网(x>0)的图象与△ABC有公共点,请直接写出m的取值范围.

manfen5.com 满分网
(1)设直线AC的解析式为y=kx+b(k≠0),根据两条直角边AB、BC分别平行于x轴、y轴,顶点B的坐标为(2,4),AB=1,BC=2,可得出点A、C两点的坐标,利用待定系数法可求出直线AC的解析式; (2)根据反比例函数y=(x>0)经过点C(2,2),把C点坐标代入反比例函数y=即可得出m的值,进而得出反比例函数的解析式,把A点坐标代入看是否符合此函数的解析式即可; (3)根据当反比例函数的图象经过点A、C时m的值最小;当经过点B时m的值最大求出m的取值范围即可. 【解析】 (1)设直线AC的解析式为y=kx+b(k≠0), ∵两条直角边AB、BC分别平行于x轴、y轴,顶点B的坐标为(2,4),AB=1,BC=2. ∴点A、C的坐标分别为(1,4)、(2,2), 根据题意,得, 解得, 故所求的一次函数的解析式为y=-2x+6.               (2)∵y=(x>0)经过点C(2,2), ∴m=4. ∴所求反比例函数解析式为y=, ∵点A(1,4),当x=1时,y==4, ∴点A在函数y= 的图象上; (3)∵当反比例函数的图象经过点A、C时m的值最小;当经过点B时m的值最大, ∴当反比例函数的图象经过点A时,4=,解得m=4; 当经过点B时,4=,解得m=8, 故m的取值范围是:4≤m≤8.
复制答案
考点分析:
相关试题推荐
某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)
manfen5.com 满分网
(1)求这1000名小学生患近视的百分比;
(2)求本次抽查的中学生人数;
(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.
查看答案
某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票.
查看答案
如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:manfen5.com 满分网,结果保留两位有效数字)
manfen5.com 满分网
查看答案
如图所示,甲乙两人准备了可以自由转动的转盘A、B,每个转盘被分成几个面积相等的扇形,并在每个扇形内标上数字.
(1)只转动A转盘,指针所指的数字是2的概率是多少?
(2)如果同时转动A、B两个转盘,将指针所指的数字相加,则和是非负数的概率是多少?并用树状图或表格说明理由.(如果指针指在分割线上,那么重转一次,直到指针指向某一区域为止).

manfen5.com 满分网 查看答案
(1)已知x=-2,求manfen5.com 满分网的值.
(2)解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.