满分5 > 初中数学试题 >

如图,已知矩形ABCD内接于⊙O,BD为⊙O直径,将△BCD沿BD所在的直线翻折...

manfen5.com 满分网如图,已知矩形ABCD内接于⊙O,BD为⊙O直径,将△BCD沿BD所在的直线翻折后,得到点C的对应点N仍在⊙O上,BN交AD与点M.若∠AMB=60°,⊙O的半径是3cm.
(1)求点O到线段ND的距离;
(2)过点A作BN的平行线EF,判断直线EF与⊙O的位置关系并说明理由.
(1)过点O作OG⊥ND于点G,OG∥BN,由矩形ABCD,可知∠N=∠C=90°=∠OGD,再解直角三角形OGD,求出OG. (2)先判断是相切然后再证明,连接OA交BN与H,由翻折得∠DBC=∠DBN,求出∠GOD,再证明△ABO是正三角形,最后证明OA⊥EF. 【解析】 (1)过点O作OG⊥ND于点G ∴∠OGD=90°, ∵四边形ABCD是矩形, ∴∠C=90°, 由翻折得 ∠N=∠C=90°=∠OGD, ∴OG∥BN, ∵∠AMB=60°, ∴∠BMD=120°, 易证:△ABM≌△NDM, ∴MB=MD, ∴∠NBD=30°, ∴∠GOD=30°, 在Rt△OGD中,cos30°=,OD=3, ∴OG=(cm) (2)相切. 证明:连接OA交BN与H, ∵∠DBN=30°, 由翻折得∠DBC=∠DBN=30°. ∵∠ABC=90°, ∴∠ABO=60°, ∵OA=OB, ∴△ABO是等边三角形. ∴∠AOB=60°, ∴∠BHO=90°, 又∵EF∥BN, ∴∠FAH=90°, ∴OA⊥EF. ∴EF与⊙O相切.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中.Rt△ABC位于第一象限,两条直角边AB、BC分别平行于x轴、y轴,顶点B的坐标为(2,4),AB=1,BC=2.
(1)求AC边所在直线的解析式;
(2)若反比例函数y=manfen5.com 满分网(x>0)的图象经过点C,求该反比例函数的解析式,并通过计算判断点A是否在该函数的图象上;
(3)若反比例函数y=manfen5.com 满分网(x>0)的图象与△ABC有公共点,请直接写出m的取值范围.

manfen5.com 满分网 查看答案
某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)
manfen5.com 满分网
(1)求这1000名小学生患近视的百分比;
(2)求本次抽查的中学生人数;
(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.
查看答案
某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票.
查看答案
如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:manfen5.com 满分网,结果保留两位有效数字)
manfen5.com 满分网
查看答案
如图所示,甲乙两人准备了可以自由转动的转盘A、B,每个转盘被分成几个面积相等的扇形,并在每个扇形内标上数字.
(1)只转动A转盘,指针所指的数字是2的概率是多少?
(2)如果同时转动A、B两个转盘,将指针所指的数字相加,则和是非负数的概率是多少?并用树状图或表格说明理由.(如果指针指在分割线上,那么重转一次,直到指针指向某一区域为止).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.