在锐角三角形纸片ABC中,BC=4,高AD=3,直线EF∥BC,分别交线段AB,AC,AD于E,F,G,设EF=x.
(1)求线段AG的长(用含x的代数式表示);
(2)将纸片沿直线EF折叠,设点A落在平面上的点为P,△PEF与四边形BCFE重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围.
考点分析:
相关试题推荐
某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
查看答案
已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=
,求BF的长.
查看答案
某海滨浴场的沿岸可以看作直线,如图所示,1号救生员在岸边的A点看到海中的B点有人求救,便立即向前跑300米到离B点最近的D点,再跳入海中游到B点救助;若2号救生员从A跑到C,再跳入海中游到B点救助,且∠BCD=60°,且每位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.请你通过计算说明两位救生员谁先到达点B?
查看答案
在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是______;
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是______(用树状图或列表法求解).
查看答案
先化简,再求值:
,其中x是不等式组
的整数解.
查看答案