满分5 > 初中数学试题 >

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4), C(2,0)...

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),
C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

manfen5.com 满分网
(1)先假设出函数解析式,利用三点法求解函数解析式. (2)设出M点的坐标,利用S=S△AOM+S△OBM-S△AOB即可进行解答; (3)分OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;OB是对角线时,由图可知点A与P应该重合. 【解析】 (1)设此抛物线的函数解析式为: y=ax2+bx+c(a≠0), 将A(-4,0),B(0,-4),C(2,0)三点代入函数解析式得: 解得, 所以此函数解析式为:y=; (2)∵M点的横坐标为m,且点M在这条抛物线上, ∴M点的坐标为:(m,), ∴S=S△AOM+S△OBM-S△AOB =×4×(-m2-m+4)+×4×(-m)-×4×4 =-m2-2m+8-2m-8 =-m2-4m, =-(m+2)2+4, ∵-4<m<0, 当m=-2时,S有最大值为:S=-4+8=4. 答:m=-2时S有最大值S=4. (3)设P(x,x2+x-4). 当OB为边时,根据平行四边形的性质知PB∥PQ, ∴Q的横坐标的绝对值等于P的横坐标的绝对值, 又∵直线的解析式为y=-x, 则Q(x,-x). 由PQ=OB,得|-x-(x2+x-4)|=4, 解得x=0,-4,-2±2. x=0不合题意,舍去. 如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4). 由此可得Q(-4,4)或(-2+2,2-2)或(-2-2,2+2)或(4,-4).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.
(1)求∠A的度数;
(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=manfen5.com 满分网,求图中阴影部分的面积.
查看答案
我省体育中考现场考试内容有四项:男生1000米(女生800米)跑和篮球为必测项目;另在立定跳远、1分钟跳绳(二选一)和坐位体前屈、肺活量(二选一)中选择两项.
(1)每位考生有几种选择方案?
(2)用A、B、C、D画树状图或列表法求小李与小王选择同种方案的概率.
查看答案
近来,校园安全问题引起了社会的极大关注,为了让学生了解安全知识,增强安全意识,某校举行了一次“安全知识竞赛”.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩为样本,绘制了下列统计图(说明:A级:90分-100分;B级:75分-89分;C级:60分-74分;D级:60分以下).
请结合图中提供的信息,解答下列问题:
manfen5.com 满分网
(1)请把条形统计图补充完整;
(2)样本中C级的学生人数占抽样学生人数的百分比是______
(3)扇形统计图中C级所在的扇形的圆心角度数是______
(4)若该校共有2000名学生,请你用此样本估计安全知识竞赛中A级和B级的学生共约有多少人?
查看答案
2013年3月国务院公布的房地产调控“国五条”实施细则中明确指出:房产转让按差额(销售价款-房产原值)的20%计算个人所得税.之前只按照销售价1%征收个人所得税.现李某有一套住房按照“国五条”要求已征收了个人所得税40000元,如果之前只需要征收4000元.请你算一算这套住房的原价和现价各是多少?
查看答案
如图,在平面直角坐标系中,每个小正方形边长都为1个单位长度.
(1)画出将△ABC向右平移5个单位长度得到的△A1B1C1
(2)画出△ABC关于x轴对称的△A2B2C2
(3)画出△A1B1C1绕着点B1顺时针旋转180°后得到的△A3B3C3

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.