九年级数学兴趣小组近期开展了对运动型问题的探究.小明同学提供了一个这样的背景:如图,在▱ABCD中,AB=AC=10cm,sin∠ACB=
,动点O从A出发以1cm/s的速度沿AC方向向点C匀速运动,同时线段EF从与线段CB重合的位置出发以1cm/s的速度沿BA方向向点C匀速运动.在运动过程中,EF交AC于点G,连接OE、OF.设运动时间为ts(0<t<10),请你解决以下问题:
(1)当t为何值时,点O与点G重合?
(2)当点O与点G不重合时,判断△OEF的形状,并说明理由.
(3)当0<t<5时,
①在上述运动过程中,五边形BCEOF的面积是否为定值?如果是,求出五边形BCEOF的面积;如果不是,请说明理由.
②△EOG的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
查看答案