满分5 > 初中数学试题 >

如图,在等腰△ABC中,点D、E分别是两腰AC、BC上的点,连接AE、BD相交于...

如图,在等腰△ABC中,点D、E分别是两腰AC、BC上的点,连接AE、BD相交于点O,∠1=∠2.
(1)求证:OD=OE;
(2)求证:四边形ABED是等腰梯形;
(3)若AB=3DE,△DCE的面积为2,求四边形ABED的面积.

manfen5.com 满分网
(1)如图,由△ABC是等腰三角形,得到∠BAD=∠ABE,然后利用已知条件证明△ABD≌△BAE,由全等三角形的性质得到BD=AE,又由∠1=∠2得到OA=OB,由此即可证明OD=OE; (2)由(1)的OD=OE根据等腰三角形的性质得到∠OED=∠ODE,根据三角形的内角和得到∠OED=(180°-∠DOE),∠1=(180°-∠AOB),而∠DOE=∠AOB,所以得到∠1=∠OED,然后利用平行线的判定得到DE∥AB,最后证明AD与BE不平行,这样就可以证明梯形ABED是等腰梯形; (3)由(2)可知DE∥AB,然后得到△DCE∽△ACB,接着利用相似三角形的性质即可求出S△ACB,然后就可以求出S四边形ABED. (1)证明:如图,∵△ABC是等腰三角形, ∴AC=BC, ∴∠BAD=∠ABE, 又∵AB=BA、∠2=∠1, ∴△ABD≌△BAE(ASA), ∴BD=AE, 又∵∠1=∠2, ∴OA=OB, ∴BD-OB=AE-OA, 即:OD=OE; (2)证明:由(1)知:OD=OE,∴∠OED=∠ODE, ∴∠OED=(180°-∠DOE), 同理:∠1=(180°-∠AOB), 又∵∠DOE=∠AOB, ∴∠1=∠OED, ∴DE∥AB, ∵AD、BE是等腰三角形两腰所在的线段, ∴AD与BE不平行, ∴四边形ABED是梯形, 又∵由(1)知,△ABD≌△BAE, ∴AD=BE, ∴梯形ABED是等腰梯形; (3)【解析】 由(2)可知:DE∥AB, ∴∠CED=∠CBA,∠CDE=∠CAB, ∴△DCE∽△ACB(AA), ∴=()2, 即=()2=. ∴S△ACB=18, ∴S四边形ABED=S△ACB-S△DCE=18-2=16.
复制答案
考点分析:
相关试题推荐
某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A、B两组捐款人数的比为1:5.
  捐款人数分组统计表:
组别捐款额x/元人数
A1≤x<10a
B10≤x<20100
C20≤x<30
D30≤x<40
Ex≥40
请结合以上信息解答下列问题.
(1)a=______,本次调查样本的容量是______
(2)先求出C组的人数,再补全“捐款人数分组统计图1”;
(3)若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?

manfen5.com 满分网 查看答案
如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:manfen5.com 满分网≈1.73)

manfen5.com 满分网 查看答案
如图,在正方形网格中,△ABC的顶点C的坐标为(3,1)
(1)画出△ABC向下平移2个单位后的△A1B1C1
(2)画出△ABC关于y轴对称的△A2B2C2,并直接写出顶点C的对称点C2的坐标.

manfen5.com 满分网 查看答案
现有5个质地、大小完全相同的小球上分别标有数字-1,-2,1,2,3.先将标有数字-2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.
(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;
(2)求取出的两个小球上的数字之和等于0的概率.
查看答案
化简:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.