满分5 > 初中数学试题 >

在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线...

在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.
(1)求b的值和点D的坐标;
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.

manfen5.com 满分网
(1)先求出点B的坐标,由直线过点B,把点B的坐标代入解析式,可求得b的值;点D在直线CM上,其纵坐标为4,利用求得的解析式确定该点的横坐标即可; (2)△POD为等腰三角形,有三种情况:PO=OD,PO=PD,DO=DP,故需分情况讨论,要求点P的坐标,只要求出点P到原点O的距离即可; (3)结合(2),可知⊙O的半径也需根据点P的不同位置进行分类讨论. 【解析】 (1)∵B与A(1,0)关于原点对称 ∴B(-1,0) ∵y=x+b过点B ∴-1+b=0,b=1 ∴y=x+1 当y=4时,x+1=4,x=3 ∴D(3,4); (2)作DE⊥x轴于点E,则OE=3,DE=4, ∴OD=. 若△POD为等腰三角形,则有以下三种情况: ①以O为圆心,OD为半径作弧交x轴的正半轴于点P1,则OP1=OD=5, ∴P1(5,0). ②以D为圆心,DO为半径作弧交x轴的正半轴于点P2,则DP2=DO=5, ∵DE⊥OP2 ∴P2E=OE=3, ∴OP2=6, ∴P2(6,0). ③取OD的中点N,过N作OD的垂线交x轴的正半轴于点P3,则OP3=DP3, 易知△ONP3∽△DCO. ∴=. ∴=,OP3=. ∴P3(,0). 综上所述,符合条件的点P有三个,分别是P1(5,0),P2(6,0),P3(,0). (3)①当P1(5,0)时,P1E=OP1-OE=5-3=2,OP1=5, ∴P1D===2. ∴⊙P的半径为. ∵⊙O与⊙P外切, ∴⊙O的半径为5-2. ②当P2(6,0)时,P2D=DO=5,OP2=6, ∴⊙P的半径为5. ∵⊙O与⊙P外切, ∴⊙O的半径为1. ③当P3(,0)时,P3D=OP3=, ∴⊙P的半径为. ∵⊙O与⊙P外切, ∴⊙O的半径为0,即此圆不存在.
复制答案
考点分析:
相关试题推荐
已知线段AC与BD相交于点O,连接AB、DC,E为OB的中点,F为OC的中点,连接EF(如图所示).
(1)添加条件∠A=∠D,∠OEF=∠OFE,求证:AB=DC.
(2)分别将“∠A=∠D”记为①,“∠OEF=∠OFE”记为②,“AB=DC”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是______命题(选择“真”或“假”填入空格).

manfen5.com 满分网 查看答案
为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图所示(其中六年级相关数据未标出).
次数12345678910
人数1122342221
根据上述信息,回答下列问题(直接写出结果):
(1)六年级的被测试人数占所有被测试人数的百分率是______
(2)在所有被测试者中,九年级的人数是______
(3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是______
(4)在所有被测试者的“引体向上”次数中,众数是______

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC.
(1)求tan∠ACB的值;
(2)若M、N分别是AB、DC的中点,连接MN,求线段MN的长.

manfen5.com 满分网 查看答案
解方程组:manfen5.com 满分网
查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.