满分5 > 初中数学试题 >

如图,在平面直角坐标系中,抛物线过A(-1,0)、B(3,0)、C(0,-1)三...

如图,在平面直角坐标系中,抛物线过A(-1,0)、B(3,0)、C(0,-1)三点.
(1)求该抛物线的表达式;
(2)若该抛物线的顶点为D,求直线AD的解析式;
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.

manfen5.com 满分网
(1)已知抛物线图象上不同的三点坐标,利用待定系数法能求出抛物线的解析式. (2)将(1)的抛物线解析式化为顶点式,即可得到顶点D的坐标,点A的坐标已知,利用待定系数法即可求出直线AD的解析式. (3)题目给出的四边形四顶点排序没有明确,因此要分两种情况讨论: ①线段AB为平行四边形的边;那么点Q向左或向右平移AB长个单位就能得到点P的坐标,点Q的横坐标是确定的,那么点P的坐标就能确定出来,而点P恰好在抛物线的图象上,代入抛物线的解析式即可求出点P的坐标; ②线段AB为对角线;那么点Q、P关于AB的中点对称(平行四边形是中心对称图形),思路同①,首先确定点P的横坐标,再代入抛物线的解析式中确定其具体的坐标值. 【解析】 (1)由题意,知:抛物线与x轴的交点为A(-1,0)、B(3,0), 可设其解析式为:y=a(x+1)(x-3),代入点C的坐标,得: -1=a(0+1)(0-3), 解得:a= 故抛物线的解析式:y=(x+1)(x-3)=x2-x-1. (2)由(1)知,抛物线的解析式:y=x2-x-1=(x-1)2-; ∴D(1,-); 设直线AD的解析式为:y=kx+b,代入A(-1,0)、D(1,-),得: ,解得 故直线AD的解析式:y=-x-. (3)设点Q的坐标为(0,y),分两种情况讨论: ①线段AB为平行四边形的边,则QP∥x轴,且QP=AB=4,有: 1、将点Q向左平移4个单位,则P1(-4,y),代入抛物线的解析式,得: y=(-4+1)(-4-3)=7, 即:P1(-4,7); 2、将点Q向右平移4个单位,则P2(4,y),代入抛物线的解析式,得: y=(4+1)(4-3)=, 即:P2(4,); ②线段AB为平行四边形的对角线,则Q、P关于AB的中点对称,即P3(2,-y),代入抛物线的解析式,得: -y=(2+1)(2-3)=-1, 即:P3(2,-1); 综上,满足条件的点P的坐标为(-4,7)、(4,)、(2,-1).
复制答案
考点分析:
相关试题推荐
探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠______
又AG=AE,AF=AF
∴△GAF≌______
______=EF,故DE+BF=EF.

(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=manfen5.com 满分网∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=manfen5.com 满分网∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
manfen5.com 满分网
查看答案
在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,9).
(1)画出△ABC及△ABC绕点A顺时针旋转90°后得到的△A1B1C1
(2)写出点B1的坐标;
(3)求出过点B1的反比例函数的解析式;
(4)求出从△ABC旋转90°得到△A1B1C1的过程中点C所经过的路径长.

manfen5.com 满分网 查看答案
甲乙两名同学玩摸球游戏.把除颜色外完全相同的六个小球分别放到两个袋子中,其中一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.现在随机从两个袋子中分别摸出一个小球.
甲说:如果摸出两个不同颜色的小球我获胜,摸出两个相同颜色的小球你获胜;
乙说:这个游戏规则对我不公平.
请你用列表或画“树形图”的方法说明乙的观点是否正确.
查看答案
如图,已知△ABC,以BC为直径,点O为圆心的半圆交AC于点F.点E为CF的中点,连接BE交AC于点M,AD为△BAC的角平分线,且AD⊥BE,垂足为点H.
(1)求证:△CME∽△BCE;
(2)求证:AB是圆O的切线;
(3)若AB=3,BC=4,求证:BE=2CE.

manfen5.com 满分网 查看答案
某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.
(1)求每件T恤和每本影集的价格分别为多少元?
(2)有几种购买T恤和影集的方案?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.