满分5 > 初中数学试题 >

如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠C...

如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.
(1)求证:四边形ABCD是正方形;
(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.

manfen5.com 满分网
(1)由∠BAE=∠BCE,∠AED=∠CED,利用三角形外角的性质,即可得∠CBE=∠ABE,又由四边形ABCD是矩形,即可证得△ABD与△BCD是等腰直角三角形,继而证得四边形ABCD是正方形; (2)由题意易证得△ABE∽△FDE,△ADE∽△GBE,△ADF∽△GCF,由AE=2EF,利用相似三角形的对应边成比例,即可求得FG=3EF. (1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角, ∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE, ∵∠BAE=∠BCE,∠AED=∠CED, ∴∠CBE=∠ABE, ∵四边形ABCD是矩形, ∴∠ABC=∠BCD=∠BAD=90°,AB=CD, ∴∠CBE=∠ABE=45°, ∴△ABD与△BCD是等腰直角三角形, ∴AB=AD=BC=CD, ∴四边形ABCD是正方形; (2)当AE=2EF时,FG=3EF. 证明:∵四边形ABCD是正方形, ∴AB∥CD,AD∥BC, ∴△ABE∽△FDE,△ADE∽△GBE, ∵AE=2EF, ∴BE:DE=AE:EF=2, ∴BG:AD=BE:DE=2, 即BG=2AD, ∵BC=AD, ∴CG=AD, ∵△ADF∽△GCF, ∴FG:AF=CG:AD, 即FG=AF=AE+EF=3EF.
复制答案
考点分析:
相关试题推荐
已知一次函数y=manfen5.com 满分网x+2的图象分别与坐标轴相交于A、B两点(如图所示),与反比例函数y=manfen5.com 满分网(x>0)的图象相交于C点.
(1)写出A、B两点的坐标;
(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数y=manfen5.com 满分网(x>0)的关系式.

manfen5.com 满分网 查看答案
某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:
视力频数(人)频率
4.0≤x<4.3200.1
4.3≤x<4.6400.2
4.6≤x<4.9700.35
4.9≤x<5.2a0.3
5.2≤x<5.510b
(1)在频数分布表中,a的值为______,b的值为______,并将频数分布直方图补充完整;
(2)甲同学说:“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围?
(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是______;并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?

manfen5.com 满分网 查看答案
求代数式的值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2manfen5.com 满分网),那么点An的纵坐标是   
manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:
manfen5.com 满分网
②点F是GE的中点;
③AF=manfen5.com 满分网AB;
④S△ABC=5S△BDF,其中正确的结论序号是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.