满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别...

如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.
(1)求抛物线的解析式;
(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;
(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.

manfen5.com 满分网
(1)根据图形,易得点A、B、C、D的坐标;进而可得抛物线上三点D、M、N的坐标,将其代入解析式,求可得解析式; (2)有(1)的解析式,可得顶点坐标,即OE、DE的长,易得△BFD∽△EOD,再由EF=FD-DE的关系代入数值可得答案;(3)首先根据CD的坐标求出CD的直线方程,在根据切线的性质,可求得P的坐标,进而可得P是否在抛物线上. 【解析】 (1)∵圆心O在坐标原点,圆O的半径为1 ∴点A、B、C、D的坐标分别为A(-1,0)、B(0,-1)、C(1,0)、D(0,1) ∵抛物线与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C ∴M(-1,-1)、N(1,1) ∵点D、M、N在抛物线上,将D(0,1)、M(-1,-1)、N(1,1)的坐标代入y=ax2+bx+c, 得: 解之,得: ∴抛物线的解析式为y=-x2+x+1. (2)∵y=-x2+x+1=-(x-)2+ ∴抛物线的对称轴为 ∴OE=,DE= 连接BF,则∠BFD=90° ∴△BFD∽△EOD ∴ 又DE=,OD=1,DB=2 ∴FD= ∴EF=FD-DE=. (3)点P在抛物线上. 设过D、C点的直线为y=kx+b 将点C(1,0)、D(0,1)的坐标代入y=kx+b,得 k=-1,b=1 ∴直线DC为y=-x+1 过点B作圆O的切线BP与x轴平行,P点的纵坐标为y=-1 将y=-1代入y=-x+1,得x=2 ∴P点的坐标为(2,-1) 当x=2时,y=-x2+x+1=-22+2+1=-1 所以,P点在抛物线y=-x2+x+1上.
复制答案
考点分析:
相关试题推荐
已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:______
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
manfen5.com 满分网
查看答案
我市某服装厂主要做外贸服装,由于技术改良,2011年全年每月的产量y(单位:万件)与月份x之间可以用一次函数y=x+10表示,但由于“欧债危机”的影响,销售受困,为了不使货积压,老板只能是降低利润销售,原来每件可赚10元,从1月开始每月每件降低0.5元.试求:
(1)几月份的单月利润是108万元?
(2)单月最大利润是多少?是哪个月份?
查看答案
如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.
(1)求证:四边形ABCD是正方形;
(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.

manfen5.com 满分网 查看答案
已知一次函数y=manfen5.com 满分网x+2的图象分别与坐标轴相交于A、B两点(如图所示),与反比例函数y=manfen5.com 满分网(x>0)的图象相交于C点.
(1)写出A、B两点的坐标;
(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数y=manfen5.com 满分网(x>0)的关系式.

manfen5.com 满分网 查看答案
某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:
视力频数(人)频率
4.0≤x<4.3200.1
4.3≤x<4.6400.2
4.6≤x<4.9700.35
4.9≤x<5.2a0.3
5.2≤x<5.510b
(1)在频数分布表中,a的值为______,b的值为______,并将频数分布直方图补充完整;
(2)甲同学说:“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围?
(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是______;并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.