根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,然后判定出△ACD是等边三角形,同理可得被分成的第二个、第三个…第n个三角形都是等边三角形,再根据后一个等边三角形的边长是前一个等边三角形的边长的一半求出第n个三角形的边长,然后根据等边三角形的面积公式求解即可.
【解析】
∵∠ACB=90°,CD是斜边AB上的中线,
∴CD=AD,
∵∠A=60°,
∴△ACD是等边三角形,
同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,
∵CD是AB的中线,EF是DB的中线,…,
∴第一个等边三角形的边长CD=DB=AB=AC=a,
第二个等边三角形的边长EF=DB=a,
…
第n个等边三角形的边长为a,
所以,第n个三角形的面积=×a×(•a)=.
故答案为:.