满分5 > 初中数学试题 >

如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接D...

如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;
(2)判断四边形ABDF是怎样的四边形,并说明理由;
(3)若AB=6,BD=2DC,求四边形ABEF的面积.

manfen5.com 满分网
(1)从图上及已知条件容易看出△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF.判定两个三角形全等时,必须有边的参与,所以此题的关键是找出相等的边. (2)由(1)的结论容易证明AB∥DF,BD∥AF,两组对边分别平行的四边形是平行四边形. (3)EF∥AB,EF≠AB,四边形ABEF是梯形,只要求出此梯形的面积即可. 【解析】 (1)(选证一)△BDE≌△FEC. 证明:∵△ABC是等边三角形, ∴BC=AC,∠ACB=60度. ∵CD=CE, ∴△EDC是等边三角形. ∴DE=EC,∠CDE=∠DEC=60° ∴∠BDE=∠FEC=120度. 又∵EF=AE, ∴BD=FE. ∴△BDE≌△FEC. (选证二)△BCE≌△FDC. 证明:∵△ABC是等边三角形, ∴BC=AC,∠ACB=60度. 又∵CD=CE, ∴△EDC是等边三角形. ∴∠BCE=∠FDC=60°,DE=CE. ∵EF=AE, ∴EF+DE=AE+CE. ∴FD=AC=BC. ∴△BCE≌△FDC. (选证三)△ABE≌△ACF. 证明:∵△ABC是等边三角形, ∴AB=AC,∠ACB=∠BAC=60度. ∵CD=CE,∴△EDC是等边三角形. ∴∠AEF=∠CED=60度. ∵EF=AE,△AEF是等边三角形. ∴AE=AF,∠EAF=60度. ∴△ABE≌△ACF. (2)四边形ABDF是平行四边形. 理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形. ∴∠CDE=∠ABC=∠EFA=60度. ∴AB∥DF,BD∥AF. ∴四边形ABDF是平行四边形. (3)由(2)知,四边形ABDF是平行四边形. ∴EF∥AB,EF≠AB. ∴四边形ABEF是梯形. 过E作EG⊥AB于G,则EG=. ∴S四边形ABEF=EG•(AB+EF)=(6+4)=10.
复制答案
考点分析:
相关试题推荐
阅读以下材料:
定义:对于三个数a、b、c,用max{a,b,c}表示这三个数中的最大数.
例如:①max{-1,2,3}=3; ②max{-1,2,a}=manfen5.com 满分网
根据以上材料,解决下列问题:
(1)如果max{2,2x+2,4-2x}=2x+2,求x的取值范围;
(2)在同一平面直角坐标系中分别作出函数y=x+1,y=(x-1)2,y=2-x的图象(不需列表),通过观察图象,填空:max{x+1,(x-1)2,2-x}的最小值为______

manfen5.com 满分网 查看答案
为了了解2012年我市初三学生理化操作实验考试的成绩情况,随机抽取了初三50位考生的得分情况如下表:
得分(分)109876
人数(人)1520852
根据表中信息,解答下列问题:
(1)求这50位同学理化实验操作得分的众数、中位数、平均数.
(2)将这50位同学此次操作得分制成如图所示的扇形统计图.试计算扇形①的圆心角度数;
(3)若我市今年有4500名同学参加本次实验操作考试,估计成绩不低于8分的学生大约有多少人?

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.
(1)画出对称中心E,并写出点E、A、C的坐标;
(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;
(3)判断△A2B2C2和△A1B1C1的位置关系.(直接写出结果)

manfen5.com 满分网 查看答案
如图,我校九年级某班数学课外活动小组利用周末开展课外实践活动,他们要在佳山公路上测量“佳山”高AB.于是他们采用了下面的方法:在佳山公路上选择了两个观察点C、D(C、D、B在一条直线上),从C处测得山顶A的仰角为30°,在D处测得山顶A的仰角为45°,已知测角仪的高CE与DF的高为1.5m,量得CD=450m.请你帮助他们计算出佳山高AB.(精确到1m,manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,E、G分别是AB、AD上的任意一点,EF∥AD,交CD于F,GH∥AB,交BC于H.EF、GH将矩形ABCD分成四个小矩形的面积分别为a、b、c、d.
(1)试猜想:a、b、c、d满足何种等量关系(直接写出a、b、c、d所满足的等式);
(2)证明(1)中的猜想是正确的.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.