满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标...

如图,抛物线y=ax2+bx(a>0)与双曲线y=manfen5.com 满分网相交于点A,B.已知点B的坐标为(-2,-2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC的面积.

manfen5.com 满分网
(1)把点B的坐标为(-2,-2)代入y=,即可得到抛物线的解析式,然后根据tan∠AOx=4,则设A的横坐标是m,A的坐标是(m,4m),代入反比例函数的解析式即可求得m的值,得到A的坐标,然后利用待定系数法即可求得抛物线的解析式; (2)直线AC∥x轴,则A、C的纵坐标相等,即可求得C的坐标,求得AC的长,然后求得△ABC中BC边上的高,则三角形的面积即可求得. 【解析】 (1)把点B的坐标为(-2,-2)代入y=,得:k=4, 则反比例函数的解析式是:y=; 设A的横坐标是m, ∵tan∠AOx=4, ∴A的纵坐标是:4m, 把A(m,4m)代入y=得:m=1或-1(舍去), 故A的坐标是(1,4), 把A、B的坐标代入y=ax2+bx,得:, 解得:, 则抛物线的解析式是:y=x2+3x; (2)在y=x2+3x中,令y=4,解得:x=1或-4, 则C的坐标是(-4,4). 则AC=5, 又∵B的坐标为(-2,-2), ∴△ABC中BC边上的高是:6, ∴S△ABC=×5×6=15.
复制答案
考点分析:
相关试题推荐
坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.
(1)小华利用测角仪和皮尺测量塔高.图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A,用测角仪测出看塔顶(M)的仰角α=35°,在A点和塔之间选择一点B,测出看塔顶(M)的仰角β=45°,然后用皮尺量出A、B两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度;(tan35°≈0.7,结果保留整数)
(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP的长为am(如图2),你能否利用这一数据设计一个测量方案如果能,请回答下列问题:
①在你设计的测量方案中,选用的测量工具是:______
②要计算出塔的高,你还需要测量哪些数据______

manfen5.com 满分网 查看答案
如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证:ME=BD.

manfen5.com 满分网 查看答案
某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:
空调机电冰箱
甲连锁店200170
乙连锁店160150
设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).
(1)求y关于x的函数关系式,并求出x的取值范围;
(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?
查看答案
如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.求证:
(1)∠AOC=2∠ACD;
(2)AC2=AB•AD.

manfen5.com 满分网 查看答案
为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.