满分5 > 初中数学试题 >

在△ABC中,∠A=90°,AB=8,AC=6,M是AB上的动点(不与A、B重合...

在△ABC中,∠A=90°,AB=8,AC=6,M是AB上的动点(不与A、B重合),过M作MN∥BC交AC于点N,以MN为直径作⊙O,设AM=x.
(1)用含x的代数式表示△AMN的面积S;
(2)M在AB上运动,当⊙O与BC相切时(如图①),求x的值;
(3)M在AB上运动,当⊙O与BC相交时(如图②),在⊙O上取一点P,使PM∥AC,连接PN,PM交BC于E,PN交BC于点F,设梯形MNFE的面积为y,求y关于x的函数关系式.

manfen5.com 满分网
(1)由已知条件证明△AMN∽△ABC(AA),然后根据相似三角形的对应边成比例求得,然后由三角形的面积公式求得用x的代数式表示的△AMN的面积S; (2)设BC与⊙O相切于点D,连接AO、OD,则AO=OD=MN.在直角三角形Rt△ABC中,根据勾股定理求得BC的值;然后根据相似三角形的性质求得OD;再过M作MQ⊥BC于Q,构建△BMQ∽△ABC,由相似三角形的对应边成比例解得x的值; (3)由已知条件证明四边形AMPN是矩形,根据矩形的性质求得PN=AM=x;然后由平行四边形BFNM的性质解得FN=8-x,PF=2x-8;最后利用相似三角形Rt△PEF∽Rt△ABC的性质求得S△PEF值;最后利用“割补法”求得题型的面积. 【解析】 (1)∵MN∥BC, ∴∠AMN=∠B,∠ANM=∠C, ∴△AMN∽△ABC, ∴,即, ∴ ∵AM⊥AN, ∴; (2)设BC与⊙O相切于点D,连接AO、OD,则AO=OD=MN, 在Rt△ABC中,, 又∵△AMN∽△ABC, ∴,即, ∴, ∴; 过M作MQ⊥BC于Q,则; 则△BMQ∽△ABC, ∴, ∴; ∵, ∴; (3)∵∠A=90°,PM∥AC,∠MPN=90°, ∴四边形AMPN是矩形, ∴PN=AM=x; 又∵四边形BFNM是平行四边形, ∴FN=BM=8-x,PF=PN-FN=x-(8-x)=2x-8, 又Rt△PEF∽Rt△ABC, ∴, ∴, ∵S△AMN=S△PMN ∴(0≤x≤8).
复制答案
考点分析:
相关试题推荐
已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
manfen5.com 满分网
查看答案
黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)
(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.
(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.
(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?

manfen5.com 满分网 查看答案
2011年3月10日,云南盈江县发生里氏5.8级地震.萧山金利浦地震救援队接到上级命令后立即赶赴震区进行救援.救援队利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:manfen5.com 满分网

manfen5.com 满分网 查看答案
某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:
manfen5.com 满分网
(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?
查看答案
标有-3,-2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为一次函数解析式y=kx+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为一次函数解析式的b值.
(1)写出k为负数的概率;
(2)求一次函数y=kx+b的图象不经过第一象限的概率.(用树状图或列举法求解)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.