对于结论①②,根据图形周长、面积的连续性变化,判定其为真命题;
对于结论③,举出反例判定其为假命题;
对于结论④,构造一个满足条件的点Q出来,判定其为真命题.
【解析】
结论①正确.理由如下:
如答图1所示,设点P为△ABC内部的任意一点,经过点P的直线l将△ABC分割后,两侧图形的周长分别为C1,C2(C1,C2中不含线段DE).
在直线l绕点P连续的旋转过程中,周长由C1<C2(或C1>C2)的情形,逐渐变为C1>C2(或C1<C2)的情形.在此过程中,一定存在C1=C2的时刻.因此经过点P至少存在一条直线平分△ABC的周长.故结论①正确;
结论②正确.理由如下:
如答图1所示,设点P为△ABC内部的任意一点,经过点P的直线l将△ABC分割后,两侧图形的面积分别为S1,S2.
在直线l绕点P连续的旋转过程中,面积由S1<S2(或S1>S2)的情形,逐渐变为S1>S2(或S1<S2)的情形.在此过程中,一定存在S1=S2的时刻.因此经过点P至少存在一条直线平分△ABC的面积.故结论②正确;
结论③错误.理由如下:
如答图2所示,AD、BE、CF为三边的中线,则AD、BE、CF分别平分△ABC的面积,而三条中线交于重心G,则经过重心G至少有三条直线可以平分△ABC的面积.故结论③错误;
结论④正确.理由如下:
如答图3所示,AD为△ABC的中线,点M、N分别在边AB、AC上,MN∥BC,且=,MN与AD交于点Q.
∵MN∥BC,∴△AMN∽△ABC,
∴===,即MN平分△ABC的面积.
又∵AD为中线,
∴过点Q的两条直线AD、MN将△ABC的面积四等分.
故结论④正确.
综上所述,正确的结论是:①②④.
故答案为:①②④.