将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.
考点分析:
相关试题推荐
问题解决:
如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当
时,求
的值.
类比归纳:
在图(1)中,若
,则
的值等于______;若
,则
的值等于______;若
(n为整数),则
的值等于______.(用含n的式子表示)
联系拓广:
如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN,设
,则
的值等于______.(用含m,n的式子表示)
查看答案
如图抛物线y=ax
2-5ax+4a与x轴相交于点A、B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标.
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.
查看答案
戒烟一小时,健康亿人行”.今年国际无烟日,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A.顾客出面制止;B.劝说进吸烟室;C.餐厅老板出面制止;D.无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:
(1)这次抽样的公众有______人;
(2)请将统计图①补充完整;
(3)在统计图②中,“无所谓”部分所对应的圆心角是______度;
(4)若城区人口有20万人,估计赞成“餐厅老板出面制止”的有______万人.并根据统计信息,谈谈自己的感想.(不超过30个字)
查看答案
如图,△ABC中,P是BC上一点,PQ⊥AB,垂足为Q,PQ=10,∠B=30°,∠PAB=45°,以A为原点,AB所在的直线为x轴建立如图所示的坐标系.
(1)点B的坐标为______
查看答案
先化简,再求值:
÷
,其中a=1+
,b=1-
查看答案