满分5 > 初中数学试题 >

如图,二次函数y=ax2+x+c的图象与x轴交于点A、B两点,且A点坐标为(-2...

如图,二次函数y=ax2+x+c的图象与x轴交于点A、B两点,且A点坐标为(-2,0),与y轴交于点C(0,3).
(1)求出这个二次函数的解析式;
(2)直接写出点B的坐标为______
(3)在x轴是否存在一点P,使△ACP是等腰三角形?若存在,求出满足条件的P点坐标;若不存在,请说明理由;
(4)在第一象限中的抛物线上是否存在一点Q,使得四边形ABQC的面积最大?若存在,请求出Q点坐标及面积的最大值;若不存在,请说明理由.

manfen5.com 满分网
(1)因为y=ax2+x+c的图象经过A(-2,0),C(0,3),代入求出c、a的值,即可得到答案; (2)把y=0代入求出x的值,即可得到答案; (3)在Rt△AOC中根据勾股定理求出AC,根据等腰三角形的性质求出,①当P1A=AC时(P1在x轴的负半轴),P1(-2-,0);②当P2A=AC时(P2在x轴的正半轴),P2(-2,0);③当P3C=AC时(P3在x轴的正半轴),P3(2,0);④当P4C=P4A时(P4在x轴的正半轴),P4(,0),即可得出答案; (4)设Q点坐标为(x,y),因为点Q在y=-x2+x+3上,得出Q点坐标为(x,-x2+x+3),连接OQ,根据S四边形ABQC=S△AOC+S△OQC+S△OBQ,代入求出即可. 【解析】 (1)∵y=ax2+x+c的图象经过A(-2,0),C(0,3), ∴c=3,a=-, ∴所求解析式为:y=-x2+x+3, 答:这个二次函数的解析式是y=-x2+x+3. (2)【解析】 (6,0), 故答案为:(6,0). (3)【解析】 在Rt△AOC中, ∵AO=2,OC=3,∴AC=, ,①当P1A=AC时(P1在x轴的负半轴),P1(-2-,0); ②当P2A=AC时(P2在x轴的正半轴),P2(-2,0); ③当P3C=AC时(P3在x轴的正半轴),P3(2,0); ④当P4C=P4A时(P4在x轴的正半轴), 在Rt△P4OC中,设P4O=x,则(x+2)2=x2+32 解得:x=, ∴P4(,0); 答:在x轴存在一点P,使△ACP是等腰三角形,满足条件的P点坐标是(-2-,0)或(-2,0)或(2,0)或(,0). (4)【解析】 如图,设Q点坐标为(x,y),因为点Q在y=-x2+x+3上, 即:Q点坐标为(x,-x2+x+3), 连接OQ, S四边形ABQC=S△AOC+S△OQC+S△OBQ, =3+x+3(-x2+x+3) =-x2+x+12, ∵a<0, ∴S四边形ABQC最大值=, Q点坐标为(3,), 答:在第一象限中的抛物线上存在一点Q,使得四边形ABQC的面积最大,Q点坐标是(3,),面积的最大值是.
复制答案
考点分析:
相关试题推荐
圆的滚动问题探索:
(1)如图1,一个半径为r的圆沿直线方向从A地滚动到B地,若AB的长为m,则该圆在滚动过程中自转了______圈.(用含的式子表示)
试验:
现有两个半径相等的圆(如图5),将⊙O2固定,⊙O1沿定圆的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2周围滚动一周回到原来的位置时,⊙O1自转了2圈,而⊙O1的圆心运动的线路也是一个圆,而这个圆的周长恰好是⊙O1的周长的2倍.
(2)如图2,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2沿周围滚动一周回到原来的位置时,⊙O1自转了______圈;
manfen5.com 满分网
(3)如图3,⊙O1,和⊙O2内切,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的边缘滚动,动时两圆保持相内切的位置关系.当⊙O1沿⊙O2边缘滚动一圈回到原来的位置时,⊙O1自转了______圈.
解决问题:
如图4,一个等边三角形与它的一边相切的圆的周长相等,当此圆按箭头方向从某一位置沿等边三角形的三边作无滑动滚动,直至回到原来的位置时,该圆自转了多少圈?请说明理由.manfen5.com 满分网
查看答案
如图1,将一个直角三角板的直角顶点P放在正方形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与BC相交于点E.
(1)求证:PA=PE;
(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且AD=10,DC=8,求AP:PE;
(3)在(2)的条件下,当P滑动到BD的延长线上时(如图3),请你直接写出AP:PE的比值.manfen5.com 满分网
查看答案
为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分 的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.
(1)观察图象可知:a=______; b=______; m=______
(2)直接写出y1,y2与x之间的函数关系式;
(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?

manfen5.com 满分网 查看答案
在打造宜居靓城、建设幸福之都活动中,在城区美化工程招标时,有甲、乙两个工程队投标.经测算,获得如下信息:
信息一:乙队单独完成这项工程需要60天;
信息二:若先由甲、乙两队合做16天,剩下的工程再由乙队单独做20天可完成;
信息三:甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.
根据以上信息,解答下列问题:
(1)甲队单独完成这项工程需要多少天?
(2)若该工程计划在50天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?
查看答案
小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:
朝上的点数123456
出现的次数79682010
(1)计算“3点朝上”的频率和“5点朝上”的频率.
(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?
(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.