满分5 > 初中数学试题 >

类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,...

类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若manfen5.com 满分网=3,求manfen5.com 满分网的值.
manfen5.com 满分网
(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是______,CG和EH的数量关系是______manfen5.com 满分网的值是______
(2)类比延伸
如图2,在原题的条件下,若manfen5.com 满分网=m(m>0),则manfen5.com 满分网的值是______(用含有m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若manfen5.com 满分网=a,manfen5.com 满分网=b,(a>0,b>0)
,则manfen5.com 满分网的值是______(用含a、b的代数式表示).
(1)本问体现“特殊”的情形,=3是一个确定的数值.如答图1,过E点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH来表示,最后求得比值; (2)本问体现“一般”的情形,=m不再是一个确定的数值,但(1)问中的解题方法依然适用,如答图2所示. (3)本问体现“类比”与“转化”的情形,将(1)(2)问中的解题方法推广转化到梯形中,如答图3所示. 【解析】 (1)依题意,过点E作EH∥AB交BG于点H,如右图1所示. 则有△ABF∽△HEF, ∴,∴AB=3EH. ∵▱ABCD,EH∥AB,∴EH∥CD, 又∵E为BC中点,∴EH为△BCG的中位线,∴CG=2EH. ===. 故填空答案:AB=3EH;CG=2EH;. (2)如右图2所示,作EH∥AB交BG于点H,则△EFH∽△AFB. ∴==m,∴AB=mEH. ∵AB=CD,∴CD=mEH.…5分 ∵EH∥AB∥CD,∴△BEH∽△BCG. ∴==2,∴CG=2EH.…6分 ∴==. 故填空答案:. (3)如右图3所示,过点E作EH∥AB交BD的延长线于点H,则有EH∥AB∥CD. ∵EH∥CD,∴△BCD∽△BEH, ∴==b,∴CD=bEH. 又=a,∴AB=aCD=abEH. ∵EH∥AB,∴△ABF∽△EHF, ∴===ab, 故填空答案:ab.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD是边长为3manfen5.com 满分网的正方形,长方形AEFG的宽AE=manfen5.com 满分网,长EF=manfen5.com 满分网manfen5.com 满分网.将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH(如图),这时BD与MN相交于点O.
(1)求∠DOM的度数;
(2)在图中,求D、N两点间的距离;
(3)若把长方形AMNH绕点A再顺时针旋转15°得到长方形ARTZ,请问此时点B在矩形ARTZ的内部、外部、还是边上?并说明理由.manfen5.com 满分网
查看答案
如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:manfen5.com 满分网≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为______米;
(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?
manfen5.com 满分网
查看答案
如图,为测量学校围墙外直立电线杆AB的高度,小亮在操场上点C处直立高3m的竹竿CD,然后退到点E处,此时恰好看到竹竿顶端D与电线杆顶端B重合;小亮又在点C1处直立高3m的竹竿C1D1,然后退到点E1处,此时恰好manfen5.com 满分网看到竹竿顶端D1与电线杆顶端B重合.小亮的眼睛离地面高度EF=1.5m,量得CE=2m,EC1=6m,C1E1=3m.
(1)△FDM∽△______,△F1D1N∽△______
(2)求电线杆AB的高度.
查看答案
在学习轴对称的时候,老师让同学们思考课本中的探究题.
如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?
你可以在l上找几个点试一试,能发现什么规律?
manfen5.com 满分网
聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:
①作点B关于直线l的对称点B′.
②连接AB′交直线l于点P,则点P为所求.
请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.
(1)在图中作出点P(保留作图痕迹,不写作法).
(2)请直接写出△PDE周长的最小值:______

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,∠C=90°,点D、E分别在边AB、AC上,DE∥BC,DE=3,BC=9
(1)求manfen5.com 满分网的值;
(2)若BD=10,求sin∠A的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.