满分5 > 初中数学试题 >

如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A...

如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长( )
manfen5.com 满分网
A.等于4manfen5.com 满分网
B.等于4manfen5.com 满分网
C.等于6
D.随P点位置的变化而变化
连接NE,设圆N半径为r,ON=x,则OD=r-x,OC=r+x,证△OBD∽△OCA,推出OC:OB=OA:OD,即(r+x):1=9:(r-x),求出r2-x2=9,根据垂径定理和勾股定理即可求出答案. 【解析】 连接NE, 设圆N半径为r,ON=x,则OD=r-x,OC=r+x, ∵以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点, ∴OA=4+5=9,0B=5-4=1, ∵AB是⊙M的直径, ∴∠APB=90°(直径所对的圆周角是直角), ∵∠BOD=90°, ∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°, ∵∠PBA=∠OBD, ∴∠PAB=∠ODB, ∵∠APB=∠BOD=90°, ∴△OBD∽△OCA, ∴=, 即=, (r+x)(r-x)=9, r2-x2=9, 由垂径定理得:OE=OF,OE2=EN2-ON2=r2-x2=9, 即OE=OF=3, ∴EF=2OE=6, 故选C.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=manfen5.com 满分网CD•OA;⑤∠DOC=90°,其中正确的是( )
A.①②⑤
B.②③④
C.③④⑤
D.①④⑤
查看答案
已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是( )
A.相切
B.相离
C.相离或相切
D.相切或相交
查看答案
用半径为2cm的半圆围成一个圆锥的侧面,这个圆锥的底面半径为( )
A.1cm
B.2cm
C.πcm
D.2πcm
查看答案
已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是( )
A.外切
B.相交
C.内切
D.内含
查看答案
如果一个扇形的半径是1,弧长是manfen5.com 满分网,那么此扇形的圆心角的大小为( )
A.30°
B.45°
C.60°
D.90°
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.