满分5 > 初中数学试题 >

菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上. (1)如图1,若...

菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.
(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;
(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.
manfen5.com 满分网
(1)首先连接AC,由菱形ABCD中,∠B=60°,根据菱形的性质,易得△ABC是等边三角形,又由三线合一,可证得AE⊥BC,继而求得∠FEC=∠CFE,即可得EC=CF,继而证得BE=DF; (2)首先连接AC,可得△ABC是等边三角形,即可得AB=AC,以求得∠ACF=∠B=60°,然后利用平行线与三角形外角的性质,可求得∠AEB=∠AFC,证得△AEB≌△AFC,即可得AE=AF,证得:△AEF是等边三角形. 证明:(1)连接AC, ∵菱形ABCD中,∠B=60°, ∴AB=BC=CD,∠C=180°-∠B=120°, ∴△ABC是等边三角形, ∵E是BC的中点, ∴AE⊥BC, ∵∠AEF=60°, ∴∠FEC=90°-∠AEF=30°, ∴∠CFE=180°-∠FEC-∠C=180°-30°-120°=30°, ∴∠FEC=∠CFE, ∴EC=CF, ∴BE=DF; (2)连接AC, ∵四边形ABCD是菱形,∠B=60° ∴AB=BC,∠D=∠B=60°,∠ACB=∠ACF, ∴△ABC是等边三角形, ∴AB=AC,∠ACB=60°, ∴∠B=∠ACF=60°, ∵AD∥BC, ∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD, ∠AFC=∠D+∠FAD=60°+∠FAD, ∴∠AEB=∠AFC, 在△ABE和△ACF中, ∴△ABE≌△ACF(AAS), ∴AE=AF, ∵∠EAF=60°, ∴△AEF是等边三角形.
复制答案
考点分析:
相关试题推荐
如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂线分别与AD、BC相交于点E、F,连接AF.求证:AE=AF.

manfen5.com 满分网 查看答案
如图,BD是平行四边形ABCD的一条对角线,AE⊥BD于点E,CF⊥BD于点F.
求证:∠DAE=∠BCF.

manfen5.com 满分网 查看答案
矩形ABCD中,AB=10,BC=3,E为AB边的中点,P为CD边上的点,且△AEP是腰长为5的等腰三角形,则DP=    查看答案
如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是   
manfen5.com 满分网 查看答案
如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.