满分5 > 初中数学试题 >

在平面直角坐标系内,反比例函数和二次函数y=k(x2+x-1)的图象交于点A(1...

在平面直角坐标系内,反比例函数和二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).
(1)当k=-2时,求反比例函数的解析式;
(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;
(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
(1)当k=-2时,即可求得点A的坐标,然后设反比例函数的解析式为:y=,利用待定系数法即可求得答案; (2)由反比例函数和二次函数都是y随着x的增大而增大,可得k<0,又由二次函数y=k(x2+x-1)的对称轴为x=-,可得x<-时,才能使得y随着x的增大而增大; (3)由△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,利用直角三角形斜边上的中线等于斜边的一半,即可得OQ=OA=OB,又由Q(-,-k),A(1,k),即可得=,继而求得答案. 【解析】 (1)当k=-2时,A(1,-2), ∵A在反比例函数图象上, ∴设反比例函数的解析式为:y=, 代入A(1,-2)得:-2=, 解得:m=-2, ∴反比例函数的解析式为:y=-; (2)∵要使反比例函数和二次函数都是y随着x的增大而增大, ∴k<0, ∵二次函数y=k(x2+x-1)=k(x+)2-k,对称轴为:直线x=-, 要使二次函数y=k(x2+x-1)满足上述条件,在k<0的情况下,x必须在对称轴的左边, 即x≤-时,才能使得y随着x的增大而增大, ∴综上所述,k<0且x≤-; (3)由(2)可得:Q(-,-k), ∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况) ∴原点O平分AB, ∴OQ=OA=OB, 作AD⊥OC,QC⊥OC, ∴OQ==, ∵OA==, ∴=, 解得:k=±.
复制答案
考点分析:
相关试题推荐
如图,长方形制片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁减和拼图
manfen5.com 满分网
第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);
第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;
第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)
(1)所拼成得四边形是什么特殊四边形?
(2)则拼成的这个四边形纸片的周长的最小值是多少?
查看答案
某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图.请根据图中所给的信息解答下列问题:
(1)这次评价中,一共抽查了______名学生;
(2)请将条形统计图补充完整;
(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?
manfen5.com 满分网
查看答案
如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.
(1)求证:OM=AN;
(2)若⊙O的半径R=3,PA=9,求OM的长.

manfen5.com 满分网 查看答案
如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.
(1)证明:四边形AECF是矩形;
(2)若AB=8,求菱形的面积.

manfen5.com 满分网 查看答案
某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有AB两个制衣间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用了20天完成,求A、B两车间每天分别能加工多少件.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.