满分5 > 初中数学试题 >

如图,边长为4的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y...

如图,边长为4的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.
(1)当CD=1时,求点E的坐标;
(2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由.

manfen5.com 满分网
(1)求点E的坐标就是求AE的长(E的横坐标就是正方形的边长),要先求出BE的长,可根据相似三角形OCD和DBE得出关于OC,CD,BD,BE的比例关系式,然后根据正方形的边长和CD的长,来求出BE的长,也就求出AE的长,那么就可得出E的坐标. (2)求梯形COEB的面积,关键是求BE的长,方法同(1)只不过将CD=1换成了CD=t,求出BE的表达式后,那么可根据梯形的面积公式,即可得出关于S,t的二次函数式,然后根据函数的性质即可得出函数的最大值即S的最大值以及对应的t的值. 【解析】 (1)正方形OABC中, ∵ED⊥OD,即∠ODE=90° ∴∠CDO+∠EDB=90°, 即∠COD=90°-∠CDO,而∠EDB=90°-∠CDO, ∴∠COD=∠EDB 又∵∠OCD=∠DBE=90° ∴△CDO∽△BED, ∴, 即, 得BE=, 则:AE=4- 因此点E的坐标为(4,). (2)存在S的最大值. 由△CDO∽△BED, ∴, 即,BE=t-t2,S=×4×(4+t-t2)=-(t-2)2+10. 故当t=2时,S有最大值10.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在⊙M中,弧AB所对的圆心角为120°,已知⊙M的半径为2cm,并建立如图所示的直角坐标系.
(1)求圆心M的坐标;
(2)求经过A,B,C三点的抛物线的解析式;
(3)点D是弦AB所对的优弧上一动点,求四边形ACBD的最大面积.
查看答案
某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
(1)该年级报名参加丙组的人数为______
(2)该年级报名参加本次活动的总人数______,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.

manfen5.com 满分网 查看答案
如图,已知线段AB、CD分别表示甲、乙两幢楼的高,AB⊥BD,CD⊥BD,从甲楼顶部A处测得乙楼顶部C的仰角α=30°,测得乙楼底部D的俯角β=60°,已知甲楼高AB=24m,求乙楼CD的高.

manfen5.com 满分网 查看答案
进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
manfen5.com 满分网
通过这段对话,请你求出该地驻军原来每天加固的米数.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.