如图,已知抛物线y=ax
2+bx+c经过点A(-1,0)、B(3,0)和C(0,-3),线段BC与抛物线的对称轴相交于点P.M、N分别是线段OC和x轴上的动点,运动时保持∠MPN=90°不变.连结MN,设MC=m.
(1)求抛物线的函数解析式;
(2)用含m的代数式表示△PMN的面积S,并求S的最大值;
(3)以PM、PN为一组邻边作矩形PMDN,当此矩形全部落在抛物线与x轴围成的封闭区域内(含边界)时,求m的取值范围.
查看答案
已知△ABC是等腰三角形,AB=AC,∠BAC=50°.将△ABC绕点A逆时针旋转角θ (0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.
(1)如图1,当θ=20°时,∠BOE=______度;
(2)当△ABC旋转到如图2所在位置时,求∠BOE的度数,并说明理由;
(3)如图3,在AB和AC上分别截取点B′和C′,使
,
,连接B′C′,将△AB′C′绕点A逆时针旋转角θ (0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O,请利用图3探索∠BOE的度数,直接写出结果,不必说明理由.
查看答案