满分5 > 初中数学试题 >

如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=...

如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当t=0.5时,求线段QM的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究manfen5.com 满分网是否为定值?若是,试求这个定值;若不是,请说明理manfen5.com 满分网由.
(1)过点C作CF⊥AB于F,则四边形AFCD为矩形,易知CF=4,AF=2,利用平行线分线段成比例定理的推论可知Rt△AQM∽Rt△ACF,那么可得比例线段,从而求出QM; (2)由于∠DCA为锐角,故有两种情况: ①当∠CPQ=90°时,点P与点E重合,可得DE+CP=CD,从而可求t;②当∠PQC=90°时,如备用图1,容易证出Rt△PEQ∽Rt△QMA,再利用比例线段,结合EQ=EM-QM=4-2t,可求t; (3)为定值.当t>2时,如备用图2,先证明四边形AMQP为矩形,再利用平行线分线段成比例定理的推论可得△CRQ∽△CAB,再利用比例线段可求. 【解析】 (1)过点C作CF⊥AB于F,则四边形AFCD为矩形. ∴CF=4,AF=2, 此时,Rt△AQM∽Rt△ACF,(2分) ∴, 即, ∴QM=1;(3分) (2)∵∠DCA为锐角,故有两种情况: ①当∠CPQ=90°时,点P与点E重合, 此时DE+CP=CD,即t+t=2,∴t=1,在0<t<2内,(5分) ②当∠PQC=90°时,如备用图1, 此时Rt△PEQ∽Rt△QMA,∴, 由(1)知,EQ=EM-QM=4-2t, 而PE=PC-CE=PC-(DC-DE)=t-(2-t)=2t-2, ∴, ∴,在0<t<2内; 综上所述,t=1或;(8分)(说明:未综述,不扣分) (3)为定值. 当t>2时,如备用图2,PA=DA-DP=4-(t-2)=6-t, 由(1)得,BF=AB-AF=4, ∴CF=BF, ∴∠CBF=45°, ∴QM=MB=6-t, ∴QM=PA, ∵AB∥DC,∠DAB=90°, ∴四边形AMQP为矩形, ∴PQ∥AB, ∴△CRQ∽△CAB, ∴.
复制答案
考点分析:
相关试题推荐
直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线manfen5.com 满分网(x<0)交于点A(-1,n).
(1)求直线与双曲线的解析式.
(2)连接OA,求∠OAB的正弦值.
(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由.

manfen5.com 满分网 查看答案
我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
manfen5.com 满分网
(1)本次调查中,张老师一共调査了______名同学,其中C类女生有______名,D类男生有______名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案
陈明同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元,后因人数增加到原定人数的2倍,享受优惠后,一共只需480元,参加活动的每个同学平均分摊的费用比原计划少4元,求原定的人数是多少?
查看答案
(1)已知:如图1所示,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
(2)如图2所示,AB是⊙O的切线,切点为A,OA=1,∠AOB=60°,求图中阴影部分的面积.manfen5.com 满分网
查看答案
(1)计算:manfen5.com 满分网
(2)解二元一次方程组manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.