已知点A(a,y
1)、B(2a,y
2)、C(3a,y
3)都在抛物线y=5x
2+12x上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有y
1,y
2,y
3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
考点分析:
相关试题推荐
(1)【原题呈现】如图,要在燃气管道l上修建一个泵站分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?
解决问题:请你在所给图中画出泵站P的位置,并保留作图痕迹;
(2)【问题拓展】已知a>0,b>0,且a+b=2,写出
的最小值;
(3)【问题延伸】已知a>0,b>0,写出以
、
、
为边长的三角形的面积.
查看答案
如图所示,等腰梯形ABCD中,AB∥CD,AB=15,AD=20,∠C=30°.点M、N同时以相同的速度分别从点A、点D开始在AB、DA上向点B、点A运动.
(1)设ND的长为x,用x表示出点N到AB的距离;
(2)当五边形BCDNM面积最小时,请判断△AMN的形状.
查看答案
如图,点A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,P是CD延长线上的点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)若AC=3,求PD的长.
查看答案
某中学艺术节期间,向全校学生征集书画作品.美术社团从九年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.
(1)直接回答美术社团所调查的4个班征集到作品共______件,并把图1补充完整;
(2)根据美术社团所调查的四个班征集作品的数量情况,估计全年级共征集到作品的数量为______;
(3)在全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,用树状图或列表法,求恰好抽中一男生一女生的概率.
查看答案
如图,AC、BD是四边形ABCD的对角线,∠DAB=∠ABC=90°,BE⊥BD且BE=BD,连接EA并延长交CD的延长线于点F.如果∠AFC=90°,求∠DAC的度数.
查看答案