满分5 > 初中数学试题 >

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题: (...

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)写出不等式ax2+bx+c>0的解集;
(3)写出y随x的增大而减小的自变量x的取值范围;
(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.

manfen5.com 满分网
(1)看二次函数与x轴交点的横坐标即可; (2)看x轴上方的二次函数的图象相对应的x的范围即可; (3)在对称轴的右侧即为y随x的增大而减小; (4)得到相对应的函数看是怎么平移得到的即可. 【解析】 (1)已知抛物线y=ax2+bx+c(a≠0),可得x1=1,x2=3;(2分) (2)依题意因为ax2+bx+c>0,得出x的取值范围为1<x<3;(2分) (3)如图可知,当y随x的增大而减小,自变量x的取值范围为x>2;(2分) (4)由顶点(2,2)设方程为a(x-2)2+2=0, ∵二次函数与x轴的2个交点为(1,0),(3,0), 代入a(x-2)2+2=0得:a(1-2)2+2=0, ∴a=-2, ∴抛物线方程为y=-2(x-2)2+2, y=-2(x-2)2+2-k实际上是原抛物线下移或上移|k|个单位.由图象知,当2-k>0时,抛物线与x轴有两个交点. 故k<2.(4分)
复制答案
考点分析:
相关试题推荐
一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:
(1)求抛物线的解析式;
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?

manfen5.com 满分网 查看答案
施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.

manfen5.com 满分网 查看答案
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
查看答案
二次函数y=ax2+bx+c中,自变量x与函数y的对应值如下表:
x-1-manfen5.com 满分网manfen5.com 满分网1manfen5.com 满分网2manfen5.com 满分网3
y-2-manfen5.com 满分网1manfen5.com 满分网2manfen5.com 满分网1-manfen5.com 满分网-2
(1)判断二次函数图象的开口方向,并写出它的顶点坐标.
(2)一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1,x2的取值范围是下列选项中的哪一个______
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网
查看答案
已知二次函数y=2x2-mx-m2
(1)求证:对于任意实数m,该二次函数图象与x轴总有公共点;
(2)若该二次函数图象与x轴有两个公共点A,B,且A点坐标为(1,0),求B点坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.