满分5 > 初中数学试题 >

如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形...

如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.
(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;
(2)在(1)的条件下,若DE=1,求△ABC的面积.

manfen5.com 满分网
(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的重点时,AB=2BD=2BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证:D为AB的中点; (2)在Rt△ADE中,根据∠A,ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC进行求解即可. 【解析】 (1)添加条件是∠A=30°. 证明:∵∠A=30°,∠C=90°,所以∠CBA=60°, ∵C点折叠后与AB边上的一点D重合, ∴BE平分∠CBD,∠BDE=90°, ∴∠EBD=30°, ∴∠EBD=∠EAB,所以EB=EA; ∵ED为△EAB的高线,所以ED也是等腰△EBA的中线, ∴D为AB中点. (2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2. 在Rt△ADE中,根据勾股定理,得AD==, ∴AB=2,∵∠A=30°,∠C=90°, ∴BC=AB=. 在Rt△ABC中,AC==3, ∴S△ABC=×AC×BC=.
复制答案
考点分析:
相关试题推荐
如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理由.

manfen5.com 满分网 查看答案
在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AB=10,AC-BC=2,求CD的长.
查看答案
如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF.

manfen5.com 满分网 查看答案
如图,在△ABC中,AD平分∠BAC,AB+BD=AC,求∠B:∠C的值.

manfen5.com 满分网 查看答案
如图,△ABC按逆时针旋转至△AB′C′的位置,使AC平分BB′.
求证:AB′平分CC′.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.