满分5 > 初中数学试题 >

如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起...

如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
(1)根据正方形和等腰直角三角形的性质可证明△OBM≌△OFN,所以根据全等的性质可知BM=FN; (2)同(1)中的证明方法一样,根据正方形和等腰直角三角形的性质得OB=OF,∠MBO=∠NFO=135°,∠MOB=∠NOF,可证△OBM≌△OFN,所以BM=FN. (1)BM=FN. 证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形, ∴∠ABD=∠F=45°,OB=OF, 在△OBM与△OFN中,, ∴△OBM≌△OFN(ASA), ∴BM=FN; (2)BM=FN仍然成立. 证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形, ∴∠DBA=∠GFE=45°,OB=OF, ∴∠MBO=∠NFO=135°, 在△OBM与△OFN中,, ∴△OBM≌△OFN(ASA), ∴BM=FN.
复制答案
考点分析:
相关试题推荐
在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.
(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).
①等腰梯形是旋转对称图形,它有一个旋转角为180度.(______
②矩形是旋转对称图形,它有一个旋转角为180°.(______
(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是______(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.
(3)写出两个多边形,它们都是旋转对图形,都有一个旋转角为72°,并且分别满足下列条件:
①是轴对称图形,但不是中心对称图形:______
②既是轴对称图形,又是中心对称图形:______

manfen5.com 满分网 查看答案
把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).
(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;
(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的manfen5.com 满分网?若存在,求出此时x的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,在10×5的正方形网格中,每个小正方形的边长均为单位1,将△ABC向右平移4个单位,得到△A′B′C′,再把△A′B′C′绕点A′逆时针旋转90°得到△A″B″C″,请你画出△A′B′C′,和△A″B″C″(不要求写画法).

manfen5.com 满分网 查看答案
如图,菱形公园内有四个景点,请你用两种不同的方法,按下列要求设计成四个部分:
(1)用直线分割;
(2)每个部分内各有一个景点;
(3)各部分的面积相等.(可用铅笔画,只要求画图正确,不写画法)
manfen5.com 满分网
查看答案
如图,两张完全重合的正方形纸片,将上面一张正方形纸片绕着它的中心O按顺时针方向旋转,旋转的角度数依次为45°,90°,135°,180°,能够使得两张正方形纸片完全重合的旋转角度数为( )
manfen5.com 满分网
A.90°
B.180°
C.90°,180°
D.45°,90°,135°,180°
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.