满分5 > 初中数学试题 >

如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB...

如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.
(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;
(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.
manfen5.com 满分网
(1)显然,当A,F,B在同一直线上时,DF≠BF. (2)注意使用两个正方形的边和90°的角,可判断出△DAG≌△BAE,那么DG=BE. 【解析】 (1)不正确. 若在正方形GAEF绕点A顺时针旋转45°,这时点F落在线段AB或AB的延长线上.(或将正方形GAEF绕点A顺时针旋转,使得点F落在线段AB或AB的延长线上).如图: 设AD=a,AG=b, 则DF=>a, BF=|AB-AF|=|a-b|<a, ∴DF>BF,即此时DF≠BF; (2)连接BE,可得△ADG≌△ABE, 则DG=BE.如图, ∵四边形ABCD是正方形, ∴AD=AB, ∵四边形GAEF是正方形, ∴AG=AE, 又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°, ∴∠DAG=∠BAE, ∴△DAG≌△BAE, ∴DG=BE.
复制答案
考点分析:
相关试题推荐
已知:如图1,点C为线段AB上一点,△ACM和△CBN都是等边三角形,AN、BM交于点P,由△BCM≌△NCA,易证结论:①BM=AN.
manfen5.com 满分网
(1)请写出除①外的两个结论:____________
(2)求出图1中AN和BM相交所得最大角的度数______
(3)将△ACM绕C点按顺时针方向旋转180°,使A点落在BC上,请对照原题图形在图2中画出符合要求的图形(不写作法,保留痕迹);
(4)探究图2中AN和BM相交所得的最大角的度数有无变化______(填变化或不变);
(5)在(3)所得到的图形2中,请探究“AN=BM”这一结论是否成立,若成立,请证明;若不成立,请说明理由.
查看答案
如图,四边形ABCD中∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)若AE=5cm,求四边形AECF的面积.

manfen5.com 满分网 查看答案
如图所示,△ABC的∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2,求∠BAD的度数和线段AD的长.

manfen5.com 满分网 查看答案
如图,△ABC为等腰直角三角形,D为AB的中点,AB=2,扇形ADG、BDH的圆心角∠DAG、∠DBH都等于90度.求阴影部分图形的面积.
manfen5.com 满分网
查看答案
已知,如图,点C是AB上一点,分别以AC,BC为边,在AB的同侧作等边三角形△ACD和△BCE.
(1)指出△ACE以点C为旋转中心,顺时针方向旋转60°后得到的三角形;
(2)若AE与BD交于点O,求∠AOD的度数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.