分别过点D,C作DE⊥AB,CF⊥AB,垂足分别为E,F,利用AAS判定△ADE≌△BCF,从而得出AE=BF,DE=CF,再根据已知求得各边的长,此时再求周长和面积就不难了.
【解析】
分别过点D,C作DE⊥AB,CF⊥AB,垂足分别为E,F.
∵DE⊥AB,CF⊥AB,等腰梯形ABCD中AD=BC
∴∠A=∠B
∴△ADE≌△BCF(AAS)
∴AE=BF,DE=CF
∴四边形CDEF为矩形,即CD=EF=8
∵AB=14,∠A=60°
∴AE=3,AD=6,DE=3
∴等腰梯形的周长=8+14+6+6=34
面积=(8+14)×3÷2=33