满分5 > 初中数学试题 >

如图所示,四边形ABCD是正方形,M是AB延长线上一点,直角三角尺的一条直角边经...

如图所示,四边形ABCD是正方形,M是AB延长线上一点,直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一直角边与∠CBM的平分线BF相交于点F.
(1)如图1所示,当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是______
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是______
③请证明你的上述两个猜想;
(2)如图2所示,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系.

manfen5.com 满分网
根据图形可以得到DE=EF,NE=BF,要证明这两个关系,只要证明△DNE≌△EBF即可.在第二个图形中,只要验证一下这个相等关系是否还成立就可以. 【解析】 (1)①DE=EF; ②NE=BF; ③∵四边形ABCD为正方形, ∴AD=AB,∠DAB=∠ABC=90°, ∵N,E分别为AD,AB中点, ∴AN=DN=AD,AE=EB=AB, ∴DN=BE,AN=AE, ∵∠DEF=90°, ∴∠AED+∠FEB=90°, 又∵∠ADE+∠AED=90°, ∴∠FEB=∠ADE, 又∵AN=AE, ∴∠ANE=∠AEN, 又∵∠A=90°, ∴∠ANE=45°, ∴∠DNE=180°-∠ANE=135°, 又∵∠CBM=90°,BF平分∠CBM, ∴∠CBF=45°,∠EBF=135°, ∴△DNE≌△EBF(ASA), ∴DE=EF,NE=BF. (2)在DA上截取DN=EB(或截取AN=AE), 连接NE,则点N可使得NE=BF. 此时DE=EF. 证明方法同(1),证△DNE≌△EBF.
复制答案
考点分析:
相关试题推荐
已知:如图,在正方形ABCD中,AC,BD交于点O,延长CB到点E,使BE=BC,连接DE交AB于点F,求证:OF=manfen5.com 满分网BE.

manfen5.com 满分网 查看答案
如图,在平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,平行四边形ABCD的周长是36,DE=4manfen5.com 满分网,DF=5manfen5.com 满分网
(1)求AB,BC的长;
(2)求∠A,∠B的度数.

manfen5.com 满分网 查看答案
已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.
求证:四边形AFCE是菱形.

manfen5.com 满分网 查看答案
如图,菱形ABCD中,E,F分别为BC,CD上的点,且CE=CF.求证:AE=AF.

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.