满分5 > 初中数学试题 >

如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<...

如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程x2-18x+72=0的两个根,点C是线段AB的中点,点D在线段OC上,OD=2CD.
(1)求点C的坐标;
(2)求直线AD的解析式;
(3)P是直线AD上的点,在平面内是否存在点Q,使以0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)因为点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程x2-18x+72=0的两个根,所以解这个方程即可得到OA=6,OB=12.又因点C是线段AB的中点,利用直角三角形斜边上的中线等于斜边的一半可知OC=AC.可作CE⊥x轴于点E,利用等腰三角形的三线合一可得,OE=OA=3,所以CE是三角形的中位线,CE=OB=6.得出点C的坐标; (2)要求直线AD的解析式,需求出D的坐标.可作DF⊥x轴于点F,因为CE⊥x轴,所以可得△OFD∽△OEC,=,于是可求得OF=2,DF=4,从而求得点D的坐标.设直线AD的解析式为y=kx+b,把A、D的坐标代入,利用方程组即可求解; (3)由(2)中D的坐标可知,DA=AF=4,所以∠OAD=45°,因为以O、A、P、Q为顶点的四边形是菱形,所以需分情况讨论: 若P在x轴上方,OAPQ是菱形,则PQ∥OA,PQ=OA=6=AP.过P作PM⊥x轴,因为∠OAD=45°,利用三角函数可求出PM=AM=3,OM=6-3,即P(6-3,3),得出Q的横坐标为6-3-6=-3,Q1(-3,3);若P在x轴下方,OAPQ是菱形,则PQ∥OA,PQ=OA=6=AP.过P作PM⊥x轴,因为∠MAP=∠OAD=45°,利用三角函数可求出PM=AM=3,OM=6+3,即P(6+3,-3),得出Q的横坐标为6+3-6=3,Q2(3,-3);若Q在x轴上方,OAQP是菱形,则∠OAQ=2∠OAD=90°,所以此时OAQP是正方形.又因正方形边长为6,所以此时Q(6,6);若Q在x轴下方,OPAQ是菱形,则∠PAQ=2∠OAD=90°,所以此时OPAQ是正方形.又因正方形对角线为6,由正方形的对称性可得Q(3,-3). 【解析】 (1)方程x2-18x+72=0,因式分解得:(x-6)(x-12)=0, 解得:x1=6,x2=12,即OA=6,OB=12, 在直角三角形OAB中,点C是斜边AB的中点, ∴OC=AC=AB. 作CE⊥x轴于点E.则CE∥OB,点C为中点, ∴E为OA的中点,CE为△OAB的中位线, ∴OE=OA=3,CE=OB=6. ∴点C的坐标为(3,6); (2)作DF⊥x轴于点F. △OFD∽△OEC,=,于是可求得OF=2,DF=4. ∴点D的坐标为(2,4). 设直线AD的解析式为y=kx+b. 把A(6,0),D(2,4)代入得 解得 ∴直线AD的解析式为y=-x+6; (3)存在.如图:分为P在x轴上方和P在x轴下方两种情况, Q1(-3,3);(1分) Q2(3,-3);(1分) Q3(3,-3);(1分) Q4(6,6).
复制答案
考点分析:
相关试题推荐
某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元.
(1)该公司有哪几种进货方案?
(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?
(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.
查看答案
已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.
(1)当三角板绕点C旋转到CD与OA垂直时(如图1),易证:OD+OE=manfen5.com 满分网OC;
(2)当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明.
manfen5.com 满分网
查看答案
某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程:加工过程中,当油箱中油量为10升时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象,根据图象回答下列问题:
(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x的取值范围);
(2)机器运行多少分钟时,第一个加工过程停止;
(3)加工完这批工件,机器耗油多少升?

manfen5.com 满分网 查看答案
某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:
(1)这次共抽调了多少人?
(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?
(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?

manfen5.com 满分网 查看答案
一条东西走向的高速公路上有两个加油站A、B,在A的北偏东45°方向还有一个加油站C,C到高速公路的最短距离是30千米,B、C间的距离是60千米,想要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B、C的距离相等,请求出交叉口P与加油站A的距离.(结果可保留根号)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.