满分5 > 初中数学试题 >

三角形两边长分别为3和6,第三边是方程x2-6x+8=0的解,则这个三角形的周长...

三角形两边长分别为3和6,第三边是方程x2-6x+8=0的解,则这个三角形的周长是( )
A.11
B.13
C.11或13
D.不能确定
先用因式分解求出方程的两个根,再根据三角形三边的关系确定三角形第三边的长,计算出三角形的周长. 【解析】 (x-2)(x-4)=0 x-2=0或x-4=0 ∴x1=2,x2=4. 因为三角形两边的长分别为3和6,所以第三边的长为4, 周长=3+6+4=13. 故选B.
复制答案
考点分析:
相关试题推荐
阅读:我们把边长为1的等边三角形PQR沿着边长为整数的正n(n>3)边形的边按照如图1的方式连续转动,当顶点P回到正n边形的内部时,我们把这种状态称为它的“点回归”;当△PQR回到原来的位置时,我们把这种状态称为它的“三角形回归”.
例如:如图2,
manfen5.com 满分网
边长为1的等边三角形PQR的顶点P在边长为1的正方形ABCD内,顶点Q与点A重合,顶点R与点B重合,△PQR沿着正方形ABCD的边BC、CD、DA、AB…连续转动,当△PQR连续转动3次时,顶点P回到正方形ABCD内部,第一次出现P的“点回归”;当△PQR连续转动4次时△PQR回到原来的位置,出现第一次△PQR的“三角形回归”.
操作:如图3,
manfen5.com 满分网
如果我们把边长为1的等边三角形PQR沿着边长为1的正五边形ABCDE的边连续转动,则连续转动的次数
k=______时,第一次出现P的“点回归”;连续转动的次数k=______时,第一次出现△PQR的“三角形回归”.
猜想:
我们把边长为1的等边三角形PQR沿着边长为1的正n(n>3)边形的边连续转动,
(1)连续转动的次数k=______时,第一次出现P的“点回归”;
(2)连续转动的次数k=______时,第一次出现△PQR的“三角形回归”;
(3)第一次同时出现P的“点回归”与△PQR的“三角形回归”时,写出连续转动的次数k与正多边形的边数n之间的关系.

manfen5.com 满分网 查看答案
如图,折叠矩形纸面ABCD,先折出折痕(对角线)BD,再折叠,使AD落在对角线BD上,得折痕DE,若3AB=4BC,AE=1,求AB的长.

manfen5.com 满分网 查看答案
在劳技课上,老师请同学们在一张长为17cm,宽为16 cm的长方形纸板上剪下一个腰长为10cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).请你帮助同学们设计出不同类型的,你认为符合条件的等腰三角形,(分别在下列矩形中画出示意图)并分别计算剪下的等腰三角形的面积.(位置不同,形状全等的将视为一种结果)
manfen5.com 满分网
查看答案
如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,观察下列图形并解答有关问题:
(1)在第n个图中,共有______块白色瓷砖,共有______块黑色瓷砖(均用含n的代数式表示);
(2)若铺设这样的矩形地面共用了506块瓷砖,通过计算求此时n的值;
(3)是否存在n,使得黑瓷砖与白瓷砖块数相等的情形?说明理由.
manfen5.com 满分网
查看答案
已知:如图,△ABC中,AB=AC,矩形BCDE的边DE分别与AB、AC交于点F、G.求证:EF=DG.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.