满分5 > 初中数学试题 >

已知a-b=2-1,ab=,则(a+1)(b-1)的值为( ) A.- B.3 ...

已知a-b=2manfen5.com 满分网-1,ab=manfen5.com 满分网,则(a+1)(b-1)的值为( )
A.-manfen5.com 满分网
B.3manfen5.com 满分网
C.3manfen5.com 满分网-2
D.manfen5.com 满分网-1
把原式化简为含ab、a-b的形式,再整体代入计算. 【解析】 ∵a-b=2-1,ab=, ∴(a+1)(b-1)=ab-a+b-1 =ab-(a-b)-1 =-(2-1)-1 =-. 故选A.
复制答案
考点分析:
相关试题推荐
已知二次函数y=x2-bx+1(-1<b<1),在b从-1变化到1的过程中,它所对应的抛物线的位置也随之变化,下列关于抛物线的移动方向描述正确的是( )
A.先往左上方移动,再往左下方移动
B.先往左下方移动,再往左上方移动
C.先往右上方移动,再往右下方移动
D.先往右下方移动,再往右上方移动
查看答案
下列说法正确的是( )
A.圆的对称轴是圆的直径
B.相等的圆周角所对的弧相等
C.平分弦的直径垂直于弦,并且平分弦所对的两条弧
D.经过半径的外端并且垂直于这条半径的直线是圆的切线
查看答案
下列各式成立的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
三角形两边长分别为3和6,第三边是方程x2-6x+8=0的解,则这个三角形的周长是( )
A.11
B.13
C.11或13
D.不能确定
查看答案
阅读:我们把边长为1的等边三角形PQR沿着边长为整数的正n(n>3)边形的边按照如图1的方式连续转动,当顶点P回到正n边形的内部时,我们把这种状态称为它的“点回归”;当△PQR回到原来的位置时,我们把这种状态称为它的“三角形回归”.
例如:如图2,
manfen5.com 满分网
边长为1的等边三角形PQR的顶点P在边长为1的正方形ABCD内,顶点Q与点A重合,顶点R与点B重合,△PQR沿着正方形ABCD的边BC、CD、DA、AB…连续转动,当△PQR连续转动3次时,顶点P回到正方形ABCD内部,第一次出现P的“点回归”;当△PQR连续转动4次时△PQR回到原来的位置,出现第一次△PQR的“三角形回归”.
操作:如图3,
manfen5.com 满分网
如果我们把边长为1的等边三角形PQR沿着边长为1的正五边形ABCDE的边连续转动,则连续转动的次数
k=______时,第一次出现P的“点回归”;连续转动的次数k=______时,第一次出现△PQR的“三角形回归”.
猜想:
我们把边长为1的等边三角形PQR沿着边长为1的正n(n>3)边形的边连续转动,
(1)连续转动的次数k=______时,第一次出现P的“点回归”;
(2)连续转动的次数k=______时,第一次出现△PQR的“三角形回归”;
(3)第一次同时出现P的“点回归”与△PQR的“三角形回归”时,写出连续转动的次数k与正多边形的边数n之间的关系.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.