满分5 > 初中数学试题 >

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在...

manfen5.com 满分网如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
(1)根据抛物线的解析式,利用对称轴公式,可直接求出其对称轴. (2)令x=0,可求出C点坐标,由BC∥x轴可知B,C关于抛物线的对称轴对称,可求出B点坐标,根据AC=BC可求出A点坐标. (3)分三种情况讨论: ①以AB为腰且顶角为∠A,先求出AB的值,再利用等腰三角形的性质结合勾股定理求出P1N的长,即可求出P1的坐标; ②以AB为腰且顶角为角B,根据MN的长和MP2的长,求出P2的纵坐标,已知其横坐标,可得其坐标; ③以AB为底,顶角为角P时,依据Rt△P3CK∽Rt△BAQ即可求出OK和P3K的长,可得P3坐标. 【解析】 (1)抛物线的对称轴x=-=;(2分) (2)由抛物线y=ax2-5ax+4可知C(0,4),对称轴x=-=, ∴BC=5,B(5,4),又AC=BC=5,OC=4, 在Rt△AOC中,由勾股定理,得AO=3, ∴A(-3,0)B(5,4)C(0,4)(5分) 把点A坐标代入y=ax2-5ax+4中, 解得a=-,(6) ∴y=x2+x+4.(7分) (3)存在符合条件的点P共有3个.以下分三类情形探索. 设抛物线对称轴与x轴交于N,与CB交于M. 过点B作BQ⊥x轴于Q, 易得BQ=4,AQ=8,AN=5.5,BM=. ①以AB为腰且顶角为角A的△PAB有1个:△P1AB. ∴AB2=AQ2+BQ2=82+42=80(8分) 在Rt△ANP1中,P1N====, ∴P1(,-).(9分) ②以AB为腰且顶角为角B的△PAB有1个:△P2AB. 在Rt△BMP2中MP2== = =,(10分) ∴P2=(,).(11分) ③以AB为底,顶角为角P的△PAB有1个,即△P3AB. 画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C. 过点P3作P3K垂直y轴,垂足为K, ∵∠CP3K=∠ABQ,∠CKP3=∠AQB, ∴Rt△P3CK∽Rt△BAQ. ∴==. ∵P3K=2.5 ∴CK=5于是OK=1,(13分) ∴P3(2.5,-1).(14分)
复制答案
考点分析:
相关试题推荐
学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.
(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;
(2)求路灯灯泡的垂直高度GH;
(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的manfen5.com 满分网到B2处时,求其影子B2C2的长;当小明继续走剩下路程的manfen5.com 满分网到B3处,…按此规律继续走下去,当小明走剩下路程的manfen5.com 满分网到Bn处时,其影子BnCn的长为______m.(直接用n的代数式表示)

manfen5.com 满分网 查看答案
如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90°的扇形
(1)求这个扇形的面积(结果保留π)
(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由
(3)当⊙O的半径R(R>0)为任意值时,(2)中的结论是否仍然成立?请说明理由.

manfen5.com 满分网 查看答案
某厂工业废气年排放量为400万立方米,为改善锦州市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到256万立方米,如果每期治理中废气减少的百分率相同.
(1)求每期减少的百分率是多少?
(2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元,问两期治理完成后需投入多少万元?
查看答案
如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC的延长线于点E,连接BC.
(1)求证:BE为⊙O的切线;
(2)如果CD=6,tan∠BCD=manfen5.com 满分网,求⊙O的直径.

manfen5.com 满分网 查看答案
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.