(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:
①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
注意:第(2)、(3)小题你选答的是第2小题.
查看答案
数学家高斯在读小学二年级时,老师出了这样一道计算题.
1+2+3+4+…+100=高斯很快得出了答案,他的计算方法是
1+2+3+4+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)
=50(1+100)=5050.
(1)请你应用上述方法,求S=1+3+5+…+(2n-1)的计算公式.
(2)如图
第二个图是由第一个图形中的三角形连接三边中点而得到的,第三个图是由第二个图中间一个三角形连接三边中点得到的,依此类推,分别写出第二个图形、第三个图形和第四个图形的三角形的个数,由此推测第n个图形三角形的个数,并求出第一个图形到第n个图形的三角形的个数之和.
查看答案