满分5 > 初中数学试题 >

如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起...

如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
(1)根据正方形和等腰直角三角形的性质可证明△OBM≌△OFN,所以根据全等的性质可知BM=FN; (2)同(1)中的证明方法一样,根据正方形和等腰直角三角形的性质得OB=OF,∠MBO=∠NFO=135°,∠MOB=∠NOF,可证△OBM≌△OFN,所以BM=FN. (1)BM=FN. 证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形, ∴∠ABD=∠F=45°,OB=OF, 在△OBM与△OFN中,, ∴△OBM≌△OFN(ASA), ∴BM=FN; (2)BM=FN仍然成立. 证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形, ∴∠DBA=∠GFE=45°,OB=OF, ∴∠MBO=∠NFO=135°, 在△OBM与△OFN中,, ∴△OBM≌△OFN(ASA), ∴BM=FN.
复制答案
考点分析:
相关试题推荐
探索:
在如图1至图3中,△ABC的面积为a.
manfen5.com 满分网
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=______(用含a的代数式表示);
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=______(用含a的代数式表示),并写出理由;
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=______(用含a的代数式表示).
发现:
像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的______倍.
应用:
去年在面积为10m2的△ABC空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图4).求这两次扩展的区域(即阴影部分)面积共为多少m2
查看答案
在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图所示.请根据图象所提供的信息解答下列问题:
(1)甲、乙两根蜡烛燃烧前的高度分别是______,从点燃到燃尽所用的时间分别是______
(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;
(3)当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等.

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交边BC于点E,连接BD.
(1)根据题设条件,请你找出图中各对相似三角形;
(2)请选择其中的一对相似三角形加以证明.

manfen5.com 满分网 查看答案
我边防战士在海拔高度(即CD的长)为50米的小岛顶部D处执行任务,上午8时发现在海面上的A处有一艘船,此时测得该船的俯角为30°,该船沿着AC方向一段时间后到达B处,又测得该船的俯角为45度.其该船在这一段时间内的航程?
(计算结果保留根号).

manfen5.com 满分网 查看答案
观察右面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:
①1×manfen5.com 满分网=1-manfen5.com 满分网manfen5.com 满分网
②2×manfen5.com 满分网=2-manfen5.com 满分网manfen5.com 满分网
③3×manfen5.com 满分网=3-manfen5.com 满分网manfen5.com 满分网
④4×manfen5.com 满分网=4-manfen5.com 满分网manfen5.com 满分网

(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;
manfen5.com 满分网
(2)猜想并写出与第n个图形相对应的等式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.