满分5 > 初中数学试题 >

(1)如图,在梯形ABCD中,AB∥CD,AB=b,CD=a,E为AD边上的任意...

(1)如图,在梯形ABCD中,AB∥CD,AB=b,CD=a,E为AD边上的任意一点,EF∥AB,且EF交BC于点F,某学生在研究这一问题时,发现如下事实:
①当manfen5.com 满分网时,有manfen5.com 满分网
②当manfen5.com 满分网时,有manfen5.com 满分网
③当manfen5.com 满分网时,有manfen5.com 满分网
manfen5.com 满分网时,参照上述研究结论,请你猜想用k表示EF的一般结论,并给出证明;
(2)现有一块直角梯形田地ABCD(如图所示),其中AB∥CD,AD⊥AB,AB=310米,DC=170米,AD=70米.若要将这块地分割成两块,由两农户来承包,要求这两块地均为直角梯形,且它们的面积相等.请你给出具体分割方案.manfen5.com 满分网
(1)本题可通过构建相似三角形来求解.过点E作BC的平行线交AB于G,交CD的延长线于H.那么四边形HCGB就是平行四边形,HC=BG=EF,因此HD=EF-a,AG=b-EF,那么可根据相似三角形HED和GEA得出的关于DH,AG,DE,AE的比例关系式,即可求出所求的比例关系式; (2)可按照(1)的思路进行求解.在AD上取一点E,作EF∥AB交BC于点F,可先设DE:AE=k,那么可用k表示出DE和EF的长.由于被EF平分的两部分面积相等,因此梯形ABCD的面积=2×梯形DEFC的面积,由此可求出梯形DEFC的面积,然后根据DE,EF的长,表示出梯形DEFC的面积即可得出关于k的方程,经过解方程即可得出k的值,进而可确定具体的分割方案. 【解析】 (1)猜想得:EF=, 证明:过点E作BC的平行线交AB于G,交CD的延长线于H. ∵AB∥CD, ∴△AGE∽△DHE, ∴, 又∵EF∥AB∥CD, ∴CH=EF=GB, ∴DH=EF-a,AG=b-EF, ∴,可得; (2)在AD上取一点E,作EF∥AB交BC于点F, 设, 则EF=,, 若S梯形DCFE=S梯形ABFE,则S梯形ABCD=2S梯形DCFE, ∵梯形ABCD、DCFE为直角梯形, ∴×70=2××(170+)×, 化简得12k2-7k-12=0解得:,(舍去), ∴DE==30, 所以只需在AD上取点E,使DE=30米,作EF∥AB(或EF⊥DA), 即可将梯形分成两个直角梯形,且它们的面积相等.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,⊙O的直径AB=4,∠ABC=30°,BC=manfen5.com 满分网,D是线段BC的中点.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.
查看答案
如图,隧道的截面由圆弧AED和矩形ABCD构成,矩形的长BC为12m,宽AB为3m,隧道的顶端E(圆弧AED的中点)高出道路(BC)7m.
(1)求圆弧AED所在圆的半径;
(2)如果该隧道内设双行道,现有一辆超高货运卡车高6.5m,宽2.3m,问这辆货运卡车能否通过该隧道.

manfen5.com 满分网 查看答案
我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:
(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.
查看答案
如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.

manfen5.com 满分网 查看答案
如图,经过点M(-1,2),N(1,-2)的抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于C点.
(1)求b的值.
(2)若OC2=OA•OB,试求抛物线的解析式.
(3)在该抛物线的对称轴上是否存在点P,使△PAC的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.