请阅读下列材料:
问题:如图(1),一圆柱的底面半径、高均为5cm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:
路线1:侧面展开图中的线段AC.如下图(2)所示:
设路线1的长度为l
1,则l
12=AC
2=AB
2+
2=5
2+(5π)
2=25+25π
2路线2:高线AB+底面直径BC.如上图(1)所示:
设路线2的长度为l
2,则l
22=(AB+BC)
2=(5+10)
2=225
l
12-l
22=25+25π
2-225=25π
2-200=25(π
2-8)>0
∴l
12>l
22,∴l
1>l
2所以要选择路线2较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1cm,高AB为5cm”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:l
12=AC
2=______;
路线2:l
22=(AB+BC)
2=______
∵l
12______l
22,
∴l
1______l
2(填>或<)
∴选择路线______(填1或2)较短.
(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为h时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到C点的路线最短.
考点分析:
相关试题推荐
为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
查看答案
已知关于x的不等式ax+3>0(其中a≠0).
(1)当a=-2时,求此不等式的解,并在数轴上表示此不等式的解集;
(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数:-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a,求使该不等式没有正整数解的概率.
查看答案
如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合).点Q在上半圆上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=90°时,判断△QCP是______三角形;
(2)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(3)由(1)、(2)得出的结论,进一步猜想,当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.
查看答案
已知二次函数y=ax
2+bx+c的图象如图:
①对称轴方程是:______;
②点A(x
1,y
1),B(x
2,y
2)是图象上的两个点,且x
1<x
2<1,则y
1______y
2③求函数解析式.
查看答案
如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.
查看答案