满分5 > 初中数学试题 >

附加题,学完“几何的回顾”一章后,老师布置了一道思考题: 如图,点M,N分别在正...

附加题,学完“几何的回顾”一章后,老师布置了一道思考题:
如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.
(1)请你完成这道思考题;
(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:
①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?
③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…
请你作出判断,在下列横线上填写“是”或“否”:①______;②______;③______.并对②,③的判断,选择一个给出证明.

manfen5.com 满分网
(1)在△ABM和△BCN中, 根据判定△ABM≌△BCN, 所以∠BAM=∠CBN, 则∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60度. (2)②同样还是根据条件判定△ACM≌△BAN, 得到∠AMC=∠BNA,所以∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°-60°=120°, 即∠BQM=60°; ③同上,证明Rt△ABM≌Rt△BCN, 得到∠AMB=∠BNC, 所以,∠QBM+∠QMB=90°,∠BQM=90°, 即∠BQM≠60°. (1)证明:在△ABM和△BCN中, , ∴△ABM≌△BCN(SAS), ∴∠BAM=∠CBN, ∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°. (2)①是;②是;③否. ②的证明:如图, 在△ACM和△BAN中, , ∴△ACM≌△BAN(SAS), ∴∠AMC=∠BNA, ∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°-60°=120°, ∴∠BQM=60°. ③的证明:如图, 在Rt△ABM和Rt△BCN中, , ∴Rt△ABM≌Rt△BCN(SAS), ∴∠AMB=∠BNC. 又∵∠NBM+∠BNC=90°, ∴∠QBM+∠QMB=90°, ∴∠BQM=90°,即∠BQM≠60°.
复制答案
考点分析:
相关试题推荐
(1)已知矩形A的长、宽分别是2和1,那么是否存在另一个矩形B,它的周长和面积分别是矩形A的周长和面积的2倍对上述问题,小明同学从“图形”的角度,利用函数图象给予了解决.小明论证的过程开始是这样的:如果用x、y分别表示矩形的长和宽,那么矩形B满足x+y=6,xy=4.请你按照小明的论证思路完成后面的论证过程;
(2)已知矩形A的长和宽分别是2和1,那么是否存在一个矩形C,它的周长和面积分别是矩形A的周长和面积的一半?小明认为这个问题是肯定的,你同意小明的观点吗?为什么?
manfen5.com 满分网
查看答案
已知:m,n是两个连续自然数(m<n),且q=mn.设p=manfen5.com 满分网+manfen5.com 满分网,则p(______).
A、总是奇数;B、总是偶数;C、有时是奇数,有时是偶数;D、有时是有理数,有时是无理数.
请选出答案,并给出证明过程.
查看答案
已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

manfen5.com 满分网 查看答案
游艇在湖面上以12千米/小时的速度向正东方向航行,在O处看到灯塔A在游艇北偏东60°方向上,航行1小时到达B处,此时看到灯塔A在游艇北偏西30°方向上.求灯塔A到航线OB的最短距离(答案可以含根号).

manfen5.com 满分网 查看答案
某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.