如图所示,在直角坐标系xOy中,正方形ABCD的四个顶点坐标为A(0,6),B(2,4),C(4,6),D(2,8).动点M在正方形ABCD的边上,从点A出发沿A→B→C→D向终点D匀速运动,速度为每秒
个长度单位,同时动点N以每秒1个单位长度的速度从点P(1,0)出发沿x轴向终点Q(7,0)匀速运动,设两点运动的时间为t秒.
(1)求线段AB的解析式,并指出x的取值范围;
(2)求经过A、B、C三点的抛物线y=ax
2+bx+c的解析式;
(3)当点M在边AB上运动时,△OMN的面积为S,试求出S关于t的函数关系式及t的取值范围,并指出当t为何值时,S有最大值.
(4)两动点M、N在运动过程中,OM与MN能否相等?若能,直接写出(不要解答过程)所有符合条件的t的值;若不能,请说明理由.
查看答案
“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.
(1)该经销商先捐款______元,后捐款______元;(用含x的式子表示)
(2)写出y与x的函数关系式,并求出自变量x的取值范围;
(3)该经销商两次至少共捐助多少元?
查看答案