满分5 > 初中数学试题 >

如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分...

如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.

manfen5.com 满分网
(1)当t=2时,可分别计算出BP、BQ的长,再对△BPQ的形状进行判断; (2)∠B为60°特殊角,过Q作QE⊥AB,垂足为E,则BQ、BP、高EQ的长可用t表示,S与t的函数关系式也可求; (3)由题目线段的长度可证得△CRQ为等边三角形,进而得出四边形EPRQ是矩形,由△APR∽△PRQ,可得出∠QPR=60°,利用60°的特殊角列出一方程即可求得t的值. 【解析】 (1)△BPQ是等边三角形 当t=2时 AP=2×1=2,BQ=2×2=4 ∴BP=AB-AP=6-2=4 ∴BQ=BP 又∵∠B=60° ∴△BPQ是等边三角形; (2)过Q作QE⊥AB,垂足为E 由QB=2t,得QE=2t•sin60°=t 由AP=t,得PB=6-t ∴S△BPQ=×BP×QE=(6-t)×t=-t ∴S=-t; (3)∵QR∥BA ∴∠QRC=∠A=60°,∠RQC=∠B=60° ∴△QRC是等边三角形 ∴QR=RC=QC=6-2t ∵BE=BQ•cos60°=×2t=t ∴EP=AB-AP-BE=6-t-t=6-2t ∴EP∥QR,EP=QR ∴四边形EPRQ是平行四边形 ∴PR=EQ=t 又∵∠PEQ=90°, ∴∠APR=∠PRQ=90° ∵△APR∽△PRQ, ∴∠QPR=∠A=60° ∴tan60°= 即 解得t= ∴当t=时,△APR∽△PRQ.
复制答案
考点分析:
相关试题推荐
2008年北京奥运会圆了所有中国人的百年奥运梦,开幕式上奇特的点火式为世界所震惊.(图中为奥运会中所用的圣火盆),其中圣火盆高120cm,盆体深20cm,立柱高110cm,CD=60cm.试求盆口圆的直径AB.

manfen5.com 满分网 查看答案
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.

manfen5.com 满分网 查看答案
在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?
查看答案
解方程:
(1)-manfen5.com 满分网x2-3x+8=0
(2)manfen5.com 满分网+manfen5.com 满分网=1+manfen5.com 满分网
查看答案
求代数式的值:manfen5.com 满分网,其中x=-6.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.