满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=...

如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.
(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;
(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.

manfen5.com 满分网
(1)利用等腰三角形的性质得∠ABD=∠ACE=105°,利用等量代换求得∠CAE=∠ADB,故△ADB∽△EAC后,得,即所以y=; (2)要使y=,即成立,则要△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC,利用三角形的内角和和邻补角的概念求得∠EAC+∠BAD=β-α,∠ADB+∠BAD=∠ABC=90°-,所以只90°-=β-α,须即β-=90°. 【解析】 (1)在△ABC中,AB=AC=1,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°, ∵∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB, ∴△ADB∽△EAC, ∴ 即,所以y=; (2)当α、β满足关系式β-时,函数关系式y=成立, 理由如下:∵β-=90°, ∴β-α=90°-. 又∵∠EAC=∠DAE-∠BAC-∠DAB=β-α-∠DAB, ∠ADB=∠ABC-∠DAB=90°--∠DAB, ∴∠ADB=∠EAC; 又∵∠ABD=∠ECA, ∴△ADB∽△EAC, ∴, ∴, ∴y=.
复制答案
考点分析:
相关试题推荐
如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.求证:AF⊥CD.

manfen5.com 满分网 查看答案
苏州市区某居民小区共有800户家庭,有关部门对该小区的自来水管网系统进行改造,为此需了解该小区自来水用水情况,该部门通过随机抽取,调查了其中30户家庭,已知这30户家庭共有87人.
(1)这30户家庭平均每户______人(精确到0.1人);
(2)这30户家庭的月用水量见下表:
月用水量(m34671214151618202528
户数12332534421
求这30户家庭的人均日用水量(一个月按30天计算,精确到0.001 m3);
(3)根据上述数据,试估计该小区的日用水量(精确到1m3).
查看答案
如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.
(1)求证:CA=CD;
(2)求⊙O的半径.

manfen5.com 满分网 查看答案
如图所示,在完全相同的5张纸上,分别画有三个三角形和两个正方形,搅匀后随机抽取两张,拼成菱形则甲胜,拼成房子则乙胜,拼成矩形则为和,你认为这个游戏公平吗?
manfen5.com 满分网
查看答案
二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根______
(2)写出不等式ax2+bx+c>0的解集______
(3)写出y随x的增大而减小的自变量x的取值范围______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.