满分5 > 初中数学试题 >

如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发...

如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

manfen5.com 满分网
(1)因为四边形ABQP是不规则的四边形,它的面积S不能直接求出.而△ABC的面积可以求出,△PCQ的面积可以用t表示,所以s可以用这两个三角形的面积之差表示.这样关系式就可以求出了. (2)假设四边形ABQP与△CPQ的面积相等,则能得到关于t的一元二次方程,求解即可. 【解析】 (1)过点P作PE⊥BC于E Rt△ABC中,AC==10(米) 由题意知:AP=2t,CQ=t,则PC=10-2t 由AB⊥BC,PE⊥BC得PE∥AB ∴ 即:=, ∴PE=(10-2t)=-t+6 又∵S△ABC=×6×8=24 ∴S=S△ABC-S△PCQ=24-•t•(-t+6)=t2-3t+24 即:S=t2-3t+24(8分) (2)假设四边形ABQP与△CPQ的面积相等,则有: t2-3t+24=12 即:t2-5t+20=0 ∵b2-4ac=(-5)2-4×1×20<0 ∴方程无实根 ∴在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积不能相等.
复制答案
考点分析:
相关试题推荐
如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.
(1)问:B处是否会受到台风的影响?请说明理由.
(2)为避免受到台风的影响,该船应在多少小时内卸完货物?
(供选用数据:manfen5.com 满分网≈1.4,manfen5.com 满分网≈1.7)

manfen5.com 满分网 查看答案
2006年“十•一”黄金周爱心超市,七天销售总额达120万元,具体分配情况如图.
(1)由图可知,日用品类销售额占总销售额的百分比为______,日用品类销售额是______万元.
(2)已知2004年爱心超市在“十•一”黄金周的食品类销售额是50万元,求这两年食品类销售额的年平均增长率.

manfen5.com 满分网 查看答案
二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x=-1.
(1)求函数解析式;
(2)若图象与x轴交于A、B(A在B左)与y轴交于C,顶点D,求四边形ABCD的面积.
查看答案
集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球.摸前交1元钱且在1--20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元.
(1)你认为该游戏对“摸彩”者有利吗?说明你的理由.
(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?
查看答案
如图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同-直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.
(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)
(2)选择(1)中你写出的一个命题,说明它正确的理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.