满分5 > 初中数学试题 >

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于...

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=manfen5.com 满分网,BC=1,求⊙O的半径.

manfen5.com 满分网
(1)要证PB是⊙O的切线,只要连接OB,求证∠OBP=90°即可; (2)连接OP,交AB于点D,求半径时,可以证明△APO∽△DPA,还可证明△PAO∽△ABC,在Rt△OAP中利用勾股定理. (1)证明:连接OB, ∵OA=OB, ∴∠OAB=∠OBA, ∵PA=PB, ∴∠PAB=∠PBA, ∴∠OAB+∠PAB=∠OBA+∠PBA, ∴∠PAO=∠PBO.(2分) 又∵PA是⊙O的切线, ∴∠PAO=90°, ∴∠PBO=90°, ∴OB⊥PB.(4分) 又∵OB是⊙O半径, ∴PB是⊙O的切线,(5分) 说明:还可连接OB、OP,利用△OAP≌△OBP来证明OB⊥PB. (2)【解析】 连接OP,交AB于点D, ∵PA=PB, ∴点P在线段AB的垂直平分线上. ∵OA=OB, ∴点O在线段AB的垂直平分线上, ∴OP垂直平分线段AB,(7分) ∴∠PDA=90°. 又∵PA切⊙O于点A, ∴∠PAO=90°, ∴∠PAO=∠PDA, 又∵∠APO=∠DPA, ∴△APO∽△DPA, ∴, ∴AP2=PO•DP. 又∵OD=BC=, ∴PO(PO-OD)=AP2,即PO(PO-)=AP2,即:PO2-PO=, 解得PO=2,(9分) 在Rt△APO中,,即⊙O的半径为1.(10分) 说明:求半径时,还可证明△PAO∽△ABC或在Rt△OAP中利用勾股定理.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60°的角,且交y轴于C点,以点O2(13,5)为圆心的圆与x轴相切于点D.
(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.

manfen5.com 满分网 查看答案
如图,⊙O1和⊙O2相交于A、B两点,且AO1、AO2分别是⊙O2、⊙O1的切线,A是切点,若⊙O1的半径r=3,⊙O2的半径R=4,求公共弦AB的长.

manfen5.com 满分网 查看答案
如图,点I是三角形ABC的内心,连接AI并延长交BC于点E,交三角形ABC的外接圆于点D,连接BD.求证.BD2=DE•DA.

manfen5.com 满分网 查看答案
已知:如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,求圆心O到AP的距离及EF的长.

manfen5.com 满分网 查看答案
在一个夹角为120°的墙角放置了一个圆形的容器,俯视图如图,在俯视图中圆与两边的墙分别切于B、C两点.如果用带刻度的直尺测量圆形容器的直径,发现直尺的长度不够.
(1)写出此图中相等的线段.
(2)请你设计一种可以通过计算求出直径的测量方法.(写出主要解题过程)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.