满分5 >
初中数学试题 >
如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A.1:2 B.1...
如果两个相似三角形的相似比是1:2,那么它们的面积比是( )
A.1:2
B.1:4
C.1:
D.2:1
考点分析:
相关试题推荐
如图,已知抛物线y=x
2+bx+c经过A(1,0),B(0,2)两点,顶点为D.
(1)求抛物线的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与y轴的交点为B
1,顶点为D
1,若点N在平移后的抛物线上,且满足△NBB
1的面积是△NDD
1面积的2倍,求点N的坐标.
查看答案
操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.
查看答案
二次函数y=ax
2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax
2+bx+c=0的两个根;
(2)写出不等式ax
2+bx+c>0的解集;
(3)写出y随x的增大而减小的自变量x的取值范围;
(4)若方程ax
2+bx+c=k有两个不相等的实数根,求k的取值范围.
查看答案
如图,在△ABC中,∠C=90°,AC=3,BC=4.O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连接DE.
(1)过点E作直线EF交AC边于点F,当EF=AF时,求证:直线EF为半圆O的切线;
(2)当BD=3时,求线段DE的长.
查看答案
已知:如图,在直角坐标系中,⊙O
1经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A(3,0)、B(0,4).设△BOA的内切圆的直径为d,求d+AB的值.
查看答案