在平面直角坐标系中,以点A(-3,0)为圆心,半径为5的圆与x轴相交于点B,C(点B在点C的左边),与y轴相交于点D,M(点D在点M的下方).
(1)求以直线x=-3为对称轴,且经过点C,D的抛物线的解析式;
(2)若点P是该抛物线对称轴上的一个动点,求PC+PD的取值范围;
(3)若E为这个抛物线对称轴上的点,则在抛物线上是否存在这样的点F,使得以点B,C,E,F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,说明理由.
考点分析:
相关试题推荐
下表给出了代数式x
2+bx+c与x的一些对应值:
x | … | -1 | | 1 | 2 | 3 | 4 | … |
X2+bx+c | … | | 3 | | -1 | | 3 | … |
(1)根据表格中的数据,确定b、c的值,并填齐表格中空白处的对应值;
(2)代数式x
2+bx+c是否有最小值?如果有,求出最小值;如果没有,请说明理由;
(3)设y=x
2+bx+c的图象与x轴的交点为A、B两点(A点在B点左侧),与y轴交于点C,P点为线段AB上一动点,过P点作PE∥AC交BC于E,连接PC,当△PEC的面积最大时,求P点的坐标.
查看答案
如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是
上一点,连接AF交CE于H,连接AC、CF、BD、OD.
(1)求证:△ACH∽△AFC;
(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;
(3)探究:当点E位于何处时,S
△AEC:S
△BOD=1:4,并加以说明.
查看答案
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案
已知:如图,等腰△ABC中,AB=BC,AE⊥BC于点E,EF⊥AB于点F,若CE=1,
,求EF的长.
查看答案
如图,已知抛物线C
1:y=a(x+2)
2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;
(1)求a的值;
(2)如图,抛物线C
2与抛物线C
1关于x轴对称,将抛物线C
2向右平移,平移后的抛物线记为C
3,抛物线C
3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C
3的解析式.
查看答案