满分5 > 初中数学试题 >

如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c...

如图,已知直线y=manfen5.com 满分网x+1与y轴交于点A,与x轴交于点D,抛物线y=manfen5.com 满分网x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;
(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.

manfen5.com 满分网
(1)易得点A(0,1),那么把A,B坐标代入y=x2+bx+c即可求得函数解析式; (2)让直线解析式与抛物线的解析式结合即可求得点E的坐标.△PAE是直角三角形,应分点P为直角顶点,点A是直角顶点,点E是直角顶点三种情况探讨; (3)易得|AM-MC|的值最大,应找到C关于对称轴的对称点B,连接AB交对称轴的一点就是M.应让过AB的直线解析式和对称轴的解析式联立即可求得点M坐标. 【解析】 (1)将A(0,1)、B(1,0)坐标代入y=x2+bx+c 得, 解得, ∴抛物线的解折式为y=x2-x+1;(2分) (2)设点E的横坐标为m,则它的纵坐标为m2-m+1, 即E点的坐标(m,m2-m+1), 又∵点E在直线y=x+1上, ∴m2-m+1=m+1 解得m1=0(舍去),m2=4, ∴E的坐标为(4,3).(4分) (Ⅰ)当A为直角顶点时, 过A作AP1⊥DE交x轴于P1点,设P1(a,0)易知D点坐标为(-2,0), 由Rt△AOD∽Rt△P1OA得 即, ∴a=, ∴P1(,0).(5分) (Ⅱ)同理,当E为直角顶点时,过E作EP2⊥DE交x轴于P2点, 由Rt△AOD∽Rt△P2ED得, 即=, ∴EP2=, ∴DP2== ∴a=-2=, P2点坐标为(,0).(6分) (Ⅲ)当P为直角顶点时,过E作EF⊥x轴于F,设P3(b、0), 由∠OPA+∠FPE=90°,得∠OPA=∠FEP,Rt△AOP∽Rt△PFE, 由得, 解得b1=3,b2=1, ∴此时的点P3的坐标为(1,0)或(3,0),(8分) 综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0); (3)抛物线的对称轴为,(9分) ∵B、C关于x=对称, ∴MC=MB, 要使|AM-MC|最大,即是使|AM-MB|最大, 由三角形两边之差小于第三边得,当A、B、M在同一直线上时|AM-MB|的值最大.(10分) 易知直线AB的解折式为y=-x+1 ∴由, 得, ∴M(,-).(11分)
复制答案
考点分析:
相关试题推荐
已知抛物线y=x2-2x+n与x轴交于不同的两点A,B,与y轴的交点在x轴的上方,其顶点是C.
(1)求实数n的取值范围;
(2)求顶点C的坐标;
(3)求线段AB的长;
(4)当AB=manfen5.com 满分网时,求抛物线的解析式.
查看答案
已知:如图,⊙O的直径AB与弦CD相交于E,manfen5.com 满分网=manfen5.com 满分网,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=manfen5.com 满分网,求线段AD、CD的长.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于E,AE=1.求梯形ABCD的高.

manfen5.com 满分网 查看答案
已知:如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).
(1)求该反比例函数的解析式;
(2)求直线BC的解析式.

manfen5.com 满分网 查看答案
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=manfen5.com 满分网x2+3x+1的一部分,如图所示.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.