满分5 > 初中数学试题 >

如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物...

manfen5.com 满分网如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
(1)因为抛物线与x轴相交,所以可令y=0,解出A、B的坐标.再根据C点在抛物线上,C点的横坐标为2,代入抛物线中即可得出C点的坐标.再根据两点式方程即可解出AC的函数表达式; (2)根据P点在AC上可设出P点的坐标.E点坐标可根据已知的抛物线求得.因为PE都在垂直于x轴的直线上,所以两点之间的距离为yp-yE,列出方程后结合二次函数的性质即可得出答案; (3)存在四个这样的点. ①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(-3,0); ②如图,AF=CG=2,A点的坐标为(-1,0),因此F点的坐标为(1,0); ③如图,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=-x+h,将G点代入后可得出直线的解析式为y=-x+7.因此直线GF与x轴的交点F的坐标为(4+,0); ④如图,同③可求出F的坐标为(4-,0); 综合四种情况可得出,存在4个符合条件的F点. 【解析】 (1)令y=0,解得x1=-1或x2=3 ∴A(-1,0)B(3,0) 将C点的横坐标x=2代入y=x2-2x-3得y=-3 ∴C(2,-3) ∴直线AC的函数解析式是y=-x-1; (2)设P点的横坐标为x(-1≤x≤2) 则P、E的坐标分别为:P(x,-x-1) E(x,x2-2x-3) ∵P点在E点的上方,PE=(-x-1)-(x2-2x-3)=-x2+x+2=-(x-)2+, ∴当时,PE的最大值=; (3)存在4个这样的点F,分别是F1(1,0),F2(-3,0),F3(4+,0),F4(4-,0). ①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(-3,0); ②如图,AF=CG=2,A点的坐标为(-1,0),因此F点的坐标为(1,0); ③如图,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=-x+h,将G点代入后可得出直线的解析式为y=-x+4+.因此直线GF与x轴的交点F的坐标为(4+,0); ④如图,同③可求出F的坐标为(4-,0). 综合四种情况可得出,存在4个符合条件的F点.
复制答案
考点分析:
相关试题推荐
如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.
(I)求抛物线的解析式;
(II)探究坐标轴上是否存在点P,使得以点P,A,C为顶点的三角形为直角三角形?若存在,求出P点坐标;若不存在,请说明理由;
(III)直线manfen5.com 满分网交y轴于D点,E为抛物线顶点.若∠DBC=α,∠CBE=β,求α-β的值.

manfen5.com 满分网 查看答案
已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

manfen5.com 满分网 查看答案
已知:抛物线与x轴交于A(-1,0)、B两点,点B在x轴的正半轴上,与y轴交于点C(0,-3),抛物线顶点为M,连接AC并延长AC交抛物线对称轴于点Q,且点Q到x轴的距离为6.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,求出点D的坐标.
查看答案
如图,Rt△ABC中,∠B=90°,AB=4,BC=8,E是AC边上一点,ED⊥AB于点D,EF⊥BC于F,设AD为x,四边形EFBD的面积为y.
(1)写出y与x的函数关系式,并求出自变量x的取值范围;
(2)求E点在AC边上的什么位置时,四边形EFBD的面积最大,最大面积是多少?

manfen5.com 满分网 查看答案
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.