满分5 > 初中数学试题 >

如图,已知半圆O的直径DE=12cm,在△ABC中,∠ACB=90°,∠ABC=...

如图,已知半圆O的直径DE=12cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.
(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?
(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域manfen5.com 满分网与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
(1)随着半圆的运动分四种情况:①当点E与点C重合时,AC与半圆相切,②当点O运动到点C时,AB与半圆相切,③当点O运动到BC的中点时,AC再次与半圆相切,④当点O运动到B点的右侧时,AB的延长线与半圆所在的圆相切.分别求得半圆的圆心移动的距离后,再求得运动的时间. (2)在1中的②,③中半圆与三角形有重合部分.在②图中重叠部分是圆心角为90°,半径为6cm的扇形,故可根据扇形的面积公式求解.在③图中,所求重叠部分面积为=S△POB+S扇形DOP. 【解析】 (1)①如图,当点E与点C重合时,AC⊥OE,OC=OE=6cm,所以AC与半圆O所在的圆相切,此时点O运动了2cm,所求运动时间为:t==1(s) ②如图,当点O运动到点C时,过点O作OF⊥AB,垂足为F. 在Rt△FOB中,∠FBO=30°,OB=12cm,则OF=6cm,即OF等于半圆O的半径,所以AB与半圆O所在的圆相切.此时点O运动了8cm,所求运动时间为:t==4(s) ③如图,当点O运动到BC的中点时,AC⊥OD,OC=OD=6cm,所以AC与半圆O所在的圆相切.此时点O运动了14cm,所求运动时间为:t==7(s). ④如图,当点O运动到B点的右侧,且OB=12cm时,过点O作OQ⊥AB,垂足为Q.在Rt△QOB中,∠OBQ=30°,则OQ=6cm,即OQ等于半圆O所在的圆的半径, 所以直线AB与半圆O所在的圆相切.此时点O运动了32cm,所求运动时间为:t==16(s). (2)当△ABC的一边所在的直线与半圆O所在的圆相切时,半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分的只有如图②与③所示的两种情形. ①如图②,设OA与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为6cm的扇形,所求重叠部分面积为:S扇形EOM=π×62=9π(cm2) ②如图③,设AB与半圆O的交点为P,连接OP,过点O作OH⊥AB,垂足为H. 则PH=BH.在Rt△OBH中,∠OBH=30°,OB=6cm 则OH=3cm,BH=3cm,BP=6cm,S△POB=×6×3=9(cm2) 又因为∠DOP=2∠DBP=60° 所以S扇形DOP==6π(cm2) 所求重叠部分面积为:S△POB+S扇形DOP=9+6π(cm2)
复制答案
考点分析:
相关试题推荐
如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
(1)求证:DE是⊙O的切线;
(2)如果⊙O的半径是manfen5.com 满分网cm,ED=2cm,求AB的长.

manfen5.com 满分网 查看答案
如图:在平面直角坐标系中,已知△ABC.
①将△ABC向x轴负方向平移四个单位得△A1B1C1,画出图形并写出A1的坐标;
②将△ABC沿y轴翻折,得△A2B2C2,画出图形并写出A2的坐标;
③以O为旋转中心,将△ABC顺时针旋转90°,得△A3B3C3,画出图形并写A3的坐标.

manfen5.com 满分网 查看答案
二次函数y=x2+bx+c的图象如图所示.
(1)求此二次函数的解析式;
(2)求此二次函数图象与x轴的交点,当x满足什么条件时,函数值y<0;
(3)把此抛物线向上平移多少个单位时,抛物线与x轴只有一个交点?并写出平移后的抛物线的解析式.

manfen5.com 满分网 查看答案
某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出10件.已知商品的进价为每件40元,如何定价才能使利润最大?设每件涨价x元,每星期售出商品的利润y元.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.